Formulation and Evaluation of Metronidazole Loaded Biopolymer Hydrogel Films for Wound Healing Applications
Anju Sharma1, Hitesh Chopra2, Inderbir Singh1*
1Chitkara College of Pharmacy, Chitkara University, Punjab, India
2Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
Received: 3rd Feb, 2025; Revised: 5th Mar, 2025; Accepted: 14th Mar, 2025; Available Online: 25th Mar, 2025
ABSTRACT
This study is based on creating and assessing citric acid (CA) cross-linked biopolymer composite Metronidazole (MTZ) loaded hydrogel films for wound healing applications. Different concentrations of sodium carboxymethyl cellulose (NaCMC), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) were used to create hydrogel films using the solvent cast method. FTIR verified the chemical cross-linking (ester bond) between NaCMC and HPMC. WVTR for hydrogel films ranged between 167.10 ± 33 to 341.41 ± 18 g/m2/day.S0 (Control) hydrogel film shows lowest tensile strength which indicates poor mechanical properties of this hydrogel film.Hydrogel films with more concentration of HPMC show a high swelling index initially but get dissolved completely within one hour, as the swelling index is inversely proportional to cross-linking density thus these results indicate poor cross-linking in S4 to S8 batches of film. Scanning Electron Microscopy (SEM), results shows drug particles on surface of control (S0) hydrogel film reveal absence of crosslinker. CA crosslinked hydrogel film show smooth and uniform morphology.X-ray diffraction (XRD) observed the crystalline nature of drug and amorphous nature of hydrogel film. In vitro studies reveal sustained release of MTZ from hydrogel films. Antibacterial study and Antimicrobial activity were investigated against Bacteriod fragilis and Escherichia coli. The hemocompatibility test reveals the biocompatibility of cross-linked hydrogel films. Overall, outcomes strongly recommended the prospective use of prepared biopolymer composite hydrogel films in wound healing applications.
Keywords: Biopolymer,Sodium carboxymethyl cellulose, Hydroxypropyl methylcellulose, Polyvinyl alcohol, Citric acid, Cross-linking, Metronidazole.
How to cite this article: Anju Sharma, Hitesh Chopra, Inderbir Singh. Formulation and Evaluation of Metronidazole Loaded Biopolymer Hydrogel Films for Wound Healing Applications. International Journal of Drug Delivery Technology. 2025;15(1):76-85. doi: 10.25258/ijddt.15.1.10
REFERENCES
- Sharma A, Chopra H, Singh I, Emran TB. Physically and chemically crosslinked hydrogels for wound healing applications. International Journal of Surgery. 2022;106:106915. DOI: 10.1016/j.ijsu.2022.106915.
- FawzyA, Fortunata V. Hydrogel Dressings in Wound Management: Advances, Applications, and Future Directions. International Journal of Medical Science and Clinical Research Studies. 2023;3(11):2674–2680. DOI: 10.47191/ijmscrs/v3-i11-25.
- Kumar D, Pandey S, Shiekmydeen J, Kumar M, Chopra S, Bhatia A. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. American Association of Pharmaceutical Scientists.2025;26(1):1-29. DOI: 10.1208/s12249-024-03017-z.
- Luna Pizarro G, Laiolo J, Salas N, Patolsky RG, Diaz Perez L, Cotello C, Feliziani C, Ropolo AS, Touz MC. Genotype-specific roles of small extracellular vesicles in modulating metronidazole resistance in Giardia lamblia. BioRxiv. 2025; 2025-01. DOI: 1101/2025.01.17.633589.
- Lee SJ, Kim J, Lee KH, Lee JA, Kim CH, Ahn JY, Jeong SJ, Ku NS, Choi JY, Yeom JS, Kim SR. Frequency and Risk Factor Analysis for Metronidazole-Associated Neurologic Adverse Events. Journal of General Internal Medicine.2024;39(6):912–920. DOI:1007/s11606-023-08566-w.
- Chen J, Dong S. Polymer-based antimicrobial strategies for periodontitis. Frontiers in Pharmacology. 2024;15: DOI:10.3389/fphar.2024.1533964.
- Gerezgiher A, Szabó T. Crosslinking of Starch Using Citric Acid. Journal of Physics: Conference Series. 2022;2315(1):012036. DOI: 10.1088/1742-6596/2315/1/012036.
- Sharmin N, Sone I, Walsh JL, Sivertsvik M, Fernández EN. Effect of citric acid and plasma activated water on the functional properties of sodium alginate for potential food packaging applications. Food Packaging and Shelf Life. 2021;29(12):2214-2894. DOI:10.1016/j.fpsl.2021.100733.
- Chang A, Ye Z, Ye Z, Deng J, LinJ, Wu C, Zhu H. Citric acid crosslinked sphingan WL gum hydrogel films supported ciprofloxacin for potential wound dressing application. Carbohydrate Polymers. 2022;291(1):119520. DOI: 10.1016/j.carbpol.2022.119520.
- Chopra H, Bibi S, Kumar S, Khan MS, Kumar P, Singh I.Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels. 2022;8(2):111. DOI:10.3390/gels8020111.
- Dharmalingam K, Anandalakshmi R. Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. International Journal of Biological 2019;134:815-829. DOI: 10.1016/j.ijbiomac.2019.05.027.
- Shin J Y, JeongH, Lee DY. Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation. Journal of Biomedical Engineering Research. 2018;39:161-167. DOI:10.9718/JBER.2018.39.4.161.
- GhorpadeVS, DiasRJ, Mali KK, MullaSI. Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water-soluble basic drugs. Journal of Drug Delivery Science and Technology. 2019;52:421-430. DOI:10.1016/j.jddst.2019.05.013.
- Wang Y, Wang T, Zhang X, Wang Q, Liu S, Guo Z, LiuH. The study of citric acid crosslinked β-cyclodextrin/hydroxypropyl cellulose food preservation film. Nordic Pulp & Paper Research Journal.2024;39(3):435-446. DOI: 10.1515/npprj-2023-0088.
- Mujtaba A, Kohli K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil.International Journal of Biological Macromolecules.2016;89:434-441. DOI: 10.1016/j.ijbiomac.2016.05.010.
- Wang CY, Yen CC, Hsu MC, Wu YT. Self-nanoemulsifying drug delivery systems for enhancing solubility, permeability, and bioavailability of sesamin. Molecules. 2020;25(14): DOI:10.3390/molecules25143119.
- Kondaveeti S, Damato TC, Carmona-Ribeiro A M, Sierakowski M R, Petri DFS. Sustainable hydroxypropyl methylcellulose/xyloglucan/gentamicin films with antimicrobial properties, Carbohydrate Polymer. 2017;165(1):285-293. DOI: 10.1016/j.carbpol.2017.02.066.
- Alavi M. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers. 2019;19(1):103-119. DOI:10.1515/epoly-2019-0013.
- Wang F, Pan Y, Cai P, GuoT, Xiao H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresource Technology. 2017;241:482-490. DOI: 10.1016/j.biortech.2017.05.162.
- Sharma A, Puri V, Kumar P, Singh I. Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiberin- Film System for Wound Healing Applications. Membranes.2021;11(1):7. DOI:10.3390/membranes11010007.
- Mahmood S, Khan NR, Razaque G, Shah SU, Shahid MG, Albarqi HA, Alqahtani AA, Alasiri A, Basit HM. Microwave-Treated Physically Cross-Linked Sodium Alginate and Sodium Carboxymethyl Cellulose Blend Polymer Film for Open IncisionWound Healing in Diabetic Animals-A Novel Perspective for Skin Tissue Regeneration Application. Pharmaceutics. 2023;15(2):418. DOI: 10.3390/pharmaceutics15020418.
- Ammanage A, Rodriques P, Kempwade A, Hiremath R. Formulation and evaluation of buccal films of piroxicam co-crystals. Future Journal of Pharmaceutical Sciences. 2020;6:16. DOI: 10.1186/s43094-020-00033-1.
- Chen J, Wu J, Veldhuis T, Picchioni F, Raffa P, Koning CE. Mechanistic Study on Citric Acid–Based Esterification: A Versatile Reaction for Preparation of Hydrophilic Polymers. ACS Sustainable Chemistry & Engineering. 2025;13(1):559-570. DOI: 10.1021/acssuschemeng.4c07569.
- Shuprajhaa T, Paramasivam SK, Pushpavalli S, Anandakumar S, Naik R. Influence of additives on the development, mechanical, functional characteristics and biodegradability of banana starch-based bio plastic films. International Journal of Biological Macromolecules.2025;295:139544. DOI: 10.1016/j.ijbiomac.2025.139544.
- Mondal MIH, Islam MM, Ahmed F. Enhanced wound healing with biogenic zinc oxide nanoparticle-incorporated carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite hydrogels. Biomaterials Science. 2025;13(1):193-209. DOI: 10.1039/D4BM01027B.
- Ding C, Zhang M, Li G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film,Carbohydrate Polymers. 2015;119:194-201. DOI: 10.1016/j.carbpol.2014.11.057.
- Khater ES, Bahnasawy A, Gabal BA, Abbas W, Morsy O. Effect of adding nano-materials on the properties of hydroxypropyl methylcellulose (HPMC) edible films. Scientific Reports. 2023; 13(1):5063. DOI:10.1038/s41598-023-32218-y.
- DilaverM, YurdakocK. Fumaric acid cross-linked carboxymethylcellulose/poly (vinyl alcohol) hydrogels.Polymer Bulletin. 2016;73(10):2661-2675. DOI:10.1007/s00289-016-1613-7.
- Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperatur., Carbohydrate Polymers. 2008;74(4):763-770. DOI: 10.1016/j.carbpol.2008.04.045.
- Dharmalingam K, Devivasha B, Kunnumakkara AB, AnandalakshmiR. Formation and characterization of zinc oxide complexes in composite hydrogel films for potential wound healing applications. Polymer Composites. 2020;41(6):2274-2287. DOI:10.1002/pc.25538.
- Ghanbari E, Picken SJ van Esch JH. Analysis of differential scanning calorimetry (DSC): determining the transition temperatures, and enthalpy and heat capacity changes in multicomponent systems by analytical model fitting. Journal of Thermal Analysis and Calorimetry. 2023;148:12393–12409. DOI:1007/s10973-023-12356-1.
- Patil V, Mahajan S, Kulkarni M, Patil K, Rode C, Coronas A, Yi GR. Synthesis of silver nanoparticles colloids in imidazolium halide ionic liquids and their antibacterial activities for gram-positive and gram-negative bacteria. Chemosphere. 2020;243: DOI: 10.1016/j.chemosphere.2019.125302.
- Borkowski A, Kowalczyk P, Czerwonka G, Cieśla J, Cłapa T, Misiewicz A, Szala M, Drabik M. Interaction of quaternary ammonium ionic liquids with bacterial membranes – Studies with Escherichia coli R1–R4-type lipopolysaccharides. Journal of Molecular Liquids. 2017;246:282-289. DOI:10.1016/j.molliq.2017.09.074.
- Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, MadanchiH. Chitosan hydrogel/silk fibroin/Mg (OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Scientific Reports. 2021;11(1):650. DOI:10.1038/s41598-020-80133-3.
- Sun J, Wu X, Zhang X, Sun A, Ye W, Liu J, Liu S, Zhang C, Wang L, Li H, Zhang L. Fabrication of functionalized chitosan hydrogels triggered by charge interactions and pH response for bacterial capture and killing. Colloid and Interface Science Communications. 2022;50:100666. DOI:10.1016/j.colcom.2022.100666.