International Journal of Drug Delivery Technology
Volume 15, Issue 1

Effect of Corn Silk on Olanzapine Induced Obesity in Rat 

Dighe S B1*, Khairnar R R1, Bhawar S B1, Ghogare R D1, Godge R K2 

1Department of Pharmacology, Pravara Rural College of Pharmacy, Pravaranagar, Maharashtra, 413736, India

2Department of Pharmaceutical Quality Assurance, Pravara Rural College of Pharmacy, Pravaranagar, Maharashtra, 413736, India

Received: 24th Jan, 2025; Revised: 12th Feb, 2025; Accepted: 1st Mar, 2025; Available Online: 25th Mar, 2025

ABSTRACT

Background: Antipsychotics are recommended as the initial, treatment for schizophrenia and other psychotic disorders based on evidences. They are commonly prescribed for conditions like borderline personality disorder, obsessive-compulsive disorder, and forms of dementia including Alzheimer's disease. The effect of medications is limited due to side effects, those must be carefully balanced against their varying therapeutic benefits across these conditions.

Objective: To study effect of corn silk extract in  olanzapine induced obesity in rats.

Methodology: Corn silk extract were made by reflux extraction method in which corn silk were collected at maturated stage, dried at room temperature and dry powder is refluxed in 70% ethanol, for 3 to 4 hour and after filtered and dry it. Six animals containing five groups were assigned. For 21 days dose (100, 200,400 mg/kg) were co-administered of CSE with olanzapine 2 mg/kg .  Body weight, locomotor activity on day 1st and day 21st. On 21st day OGTT was conducted. Dissected organ weighed and collected visceral fat and estimation of lipid profile and calculate the oxidative stress of animals.

Result: Corn silk extract ameliorates obesity in rats induced by olanzapine and hyperphagia by improved lipid metabolism.

Keyword: Olanzapine, Lipid Metabolism, Corn Silk Extract, Weight Gain, Metabolic Changes

How to cite this article: Dighe S B, Khairnar R R, Bhawar S B, Ghogare R D, Godge R K. Effect of Corn Silk on Olanzapine Induced Obesity in Rat. International Journal of Drug Delivery Technology. 2025;15(1):178-86. doi: 10.25258/ijddt.15.1.25

REFERENCES

  1. Ostuzzi G, Bertolini F, Del Giovane C, et al. Maintenance Treatment With Long-Acting Injectable Antipsychotics for People With Nonaffective Psychoses: A Network Meta-Analysis. AJP. 2021;178(5):424-436. doi:10.1176/appi.ajp.2020.20071120
  2. Fountoulakis KN, Grunze H, Vieta E, et al. The International College of Neuro-Psychopharmacology (CINP) Treatment Guidelines for Bipolar Disorder in Adults (CINP-BD-2017), Part 3: The Clinical Guidelines. Int J Neuropsychopharmacol. 2016;20(2):180-195. doi:10.1093/ijnp/pyw109
  3. Lucca JM, Madhan R, Parthasarathi G, Ram D. Identification and management of adverse effects of antipsychotics in a tertiary care teaching hospital. J Res Pharm Pract. 2014;3(2):46-50. doi:10.4103/2279-042X.137063
  4. de Leon J, Susce MT, Johnson M, et al. A clinical study of the association of antipsychotics with hyperlipidemia. Schizophr Res. 2007;92(1-3):95-102. doi:10.1016/j.schres.2007.01.015
  5. Vyas UB, Khobragade KS, Vyas PU. Development of Multi-particulate Formulation of Glabridin with L-Phenylalanine and Its Pre-clinical Evaluation for Anti-obesity Activity. International Journal of Drug Delivery Technology.2024;14(1):183-1
  6. Sayed S, Ahmed M, El-Shehawi A, et al. Ginger Water Reduces Body Weight Gain and Improves Energy Expenditure in Rats. Foods. 2020;9(1):38. doi:10.3390/foods9010038
  7. Zhang Y, Wu L, Ma Z, Cheng J, Liu J. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice. Molecules. 2015;21(1):7. doi:10.3390/molecules21010007
  8. Chaudhary RK, Karoli SS, Dwivedi PSR, Bhandari R. Anti-diabetic potential of Corn silk (Stigma maydis): An in-silico approach. J Diabetes Metab Disord. 2022;21(1):445-454. doi:10.1007/s40200-022-00992-7
  9. Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat. 2017;13:2231-2241. doi:10.2147/NDT.S113099
  10. Ma Y, Meng A, Liu P, et al. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules. 2022;27(2):362. doi:10.3390/molecules27020362
  11. Perez de Souza L, Alseekh S, Scossa F, Fernie AR. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods. 2021;18(7):733-746. doi:10.1038/s41592-021-01116-4
  12. Hohlbaum K, Frahm S, Rex A, Palme R, Thöne-Reineke C, Ullmann K. Social enrichment by separated pair housing of male C57BL/6JRj mice. Sci Rep. 2020;10(1):11165. doi:10.1038/s41598-020-67902-w
  13. Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An Experimental Approach for Selecting Appropriate Rodent Diets for Research Studies on Metabolic Disorders. Biomed Res Int. 2013;2013:752870. doi:10.1155/2013/752870
  14. Huang M, Yu L, Pan F, et al. A randomized, 13-week study assessing the efficacy and metabolic effects of paliperidone palmitate injection and olanzapine in first-episode schizophrenia patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018;81:122-130. doi:10.1016/j.pnpbp.2017.10.021
  15. Carrillo JA, González JA, Gervasini G, López R, Fernández MA, Núñez GM. Thrombocytopenia and fatality associated with olanzapine. Eur J Clin Pharmacol. 2004;60(4):295-296. doi:10.1007/s00228-004-0772-x
  16. Lander M, Bastiampillai T. Neutropenia associated with quetiapine, olanzapine, and aripiprazole. Aust N Z J Psychiatry. 2011;45(1):89. doi:10.3109/00048674.2010.524624
  17. Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol. 2019;1916:105-111. doi:10.1007/978-1-4939-8994-2_10
  18. Barik R, Jain S, Qwatra D, Joshi A, Tripathi GS, Goyal R. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Indian J Pharmacol. 2008;40(1):19-22. doi:10.4103/0253-7613.40484
  19. Leblanc AF, Huang KM, Uddin ME, Anderson JT, Chen M, Hu S. Murine Pharmacokinetic Studies. Bio Protoc. 2018;8(20):e3056. doi:10.21769/BioProtoc.3056
  20. Van Herck H, Baumans V, Brandt CJ, et al. Blood sampling from the retro-orbital plexus, the saphenous vein and the tail vein in rats: comparative effects on selected behavioural and blood variables. Lab Anim. 2001;35(2):131-139. doi:10.1258/0023677011911499
  21. Majhi S, Singh L, Verma M, Chauhan I, kumari R, Sharma M. In-vivo evaluation and formulation development of polyherbal extract in streptozotocin-induced diabetic rat. Phytomedicine Plus. 2022;2(4):100337. doi:10.1016/j.phyplu.2022.100337
  22. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry. 2017;524:13-30. doi:10.1016/j.ab.2016.10.021
  23. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. Journal of Chromatography B. 2005;827(1):76-82. doi:10.1016/j.jchromb.2005.06.035
  24. Tipple TE, Rogers LK. Methods for the Determination of Plasma or Tissue Glutathione Levels. Methods Mol Biol. 2012;889:315-324. doi:10.1007/978-1-61779-867-2_20
  25. Lőrincz T, Szarka A. The determination of hepatic glutathione at tissue and subcellular level. J Pharmacol Toxicol Methods. 2017;88(Pt 1):32-39. doi:10.1016/j.vascn.2017.05.004
  26. Hadwan MH. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochemistry. 2018;19(1):7. doi:10.1186/s12858-018-0097-5
  27. Weydert CJ, Cullen JJ. MEASUREMENT OF SUPEROXIDE DISMUTASE, CATALASE, AND GLUTATHIONE PEROXIDASE IN CULTURED CELLS AND TISSUE. Nat Protoc. 2010;5(1):51-66. doi:10.1038/nprot.2009.197
  28. Team NB. A Brief Guide to Tissue Fixation for Histology. ndbbio. July 9, 2020. Accessed January 17, 2025. https://www.ndbbio.com/post/tissue_fixation
  29. Weston-Green K, Huang XF, Deng C. Olanzapine treatment and metabolic dysfunction: a dose response study in female Sprague Dawley rats. Behavioural Brain Research. 2011;217(2):337-346. doi:10.1016/j.bbr.2010.10.039
  30. Dunican KC, DelDotto D. The role of olanzapine in the treatment of anorexia nervosa. Ann Pharmacother. 2007;41(1):111-115. doi:10.1345/aph.1H297
  31. Fernø J, Varela L, Skrede S, et al. Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation. PLoS One. 2011;6(6):e20571. doi:10.1371/journal.pone.0020571
  32. Salviato Balbão M, Cecílio Hallak JE, Arcoverde Nunes E, et al. Olanzapine, weight change and metabolic effects: a naturalistic 12-month follow up. Ther Adv Psychopharmacol. 2014;4(1):30-36. doi:10.1177/2045125313507738
  33. Kaviani F, Razavi BM, Mohsenzadeh MS, Rameshrad M, Hosseinzadeh H. Thymoquinone attenuates olanzapine-induced metabolic disorders in rats. Mol Biol Rep. 2023;50(11):8925-8935. doi:10.1007/s11033-023-08726-5
  34. Lee EY, Kim SL, Kang HJ, Kim MH, Ha AW, Kim WK. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets. Nutr Res Pract. 2016;10(6):575-582. doi:10.4162/nrp.2016.10.6.575
  35. Victoriano M, de Beaurepaire R, Naour N, et al. Olanzapine-induced accumulation of adipose tissue is associated with an inflammatory state. Brain Research. 2010;1350:167-175. doi:10.1016/j.brainres.2010.05.060
  36. Schlaepfer IR, Joshi M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology. 2020;161(2):bqz046. doi:10.1210/endocr/bqz046
  37. Qian L, He X, Liu Y, et al. Longitudinal Gut Microbiota Dysbiosis Underlies Olanzapine-Induced Weight Gain. Microbiol Spectr. 11(4):e00058-23. doi:10.1128/spectrum.00058-23
  38. Haslina, Wahjuningsih SB. Effect of corn silk powder extracts using in vivo to lipid profile and liver fat. IOP Conf Ser: Earth Environ Sci. 2020;443(1):012010. doi:10.1088/1755-1315/443/1/012010
  39. Feingold KR. Obesity and Dyslipidemia. In: Feingold KR, Anawalt B, Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed January 17, 2025. http://www.ncbi.nlm.nih.gov/books/NBK305895/
  40. Zhao X, Wang D, Qin L. Lipid profile and prognosis in patients with coronary heart disease: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord. 2021;21:69. doi:10.1186/s12872-020-01835-0
  41. Sies H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants (Basel). 2020;9(9):852. doi:10.3390/antiox9090852
  42. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry. 2017;524:13-30. doi:10.1016/j.ab.2016.10.021
  43. Landau G, Kodali VK, Malhotra JD, Kaufman RJ. Chapter Fourteen - Detection of Oxidative Damage in Response to Protein Misfolding in the Endoplasmic Reticulum. In: Cadenas E, Packer L, eds. Methods in Enzymology. Vol 526. Hydrogen Peroxide and Cell Signaling, Part A. Academic Press; 2013:231-250. doi:10.1016/B978-0-12-405883-5.00014-4
  44. Lapčík L, Řepka D, Lapčíková B, et al. A Physicochemical Study of the Antioxidant Activity of Corn Silk Extracts. Foods. 2023;12(11):2159. doi:10.3390/foods12112159