Design and Characterization of Buccal Patch Containing Extracts of Ailanthus excelsa and Tridax procumbens for the Treatment of Inflammation
Yogesh B. Ubarhande*, Ashish Singh Parihar
*Faculty of Pharmacy, Oriental University Indore, Jakhya, Indore, Madhya Pradesh 453555, India
Received: 17th Dec, 2024; Revised: 24th Jan, 2025; Accepted: 16th Feb, 2025; Available Online: 25th Mar, 2025
ABSTRACT
Inflammation is a natural immune response, but chronic inflammation can lead to various diseases, including arthritis, cardiovascular disorders, and autoimmune conditions. Ailanthus excelsa and Tridax procumbens possess anti-inflammatory properties, making them valuable for medicinal use. This study develops and evaluates buccal patches incorporating their extracts for inflammation management. Extracts were characterized using UV-Vis, FTIR, and DSC analyses, confirming compatibility with excipients. Buccal Patches, formulated using HPMC, PVA, and glycerol, were optimized via Central Composite Design and evaluated for mechanical and drug release properties. UV-Vis spectroscopy identified absorption peaks at 254 nm and 240 nm, while FTIR analysis confirmed functional groups indicative of a complex organic composition. DSC analysis revealed phase transitions at 96.34°C and 339.48°C, ensuring thermal stability. FTIR and DSC studies showed no significant interactions between extracts and excipients, confirming formulation stability. Optimized patches, formulated with HPMC K100, PVA, and glycerol, exhibited tensile strength between 0.567 to 0.987 kg/cm² and drug release of 85.74% to 97.21%. Statistical analysis confirmed polymer concentration's impact on mechanical properties and drug release. In conclusion, the study successfully developed extract-loaded buccal patches with optimal mechanical strength and controlled drug release, highlighting their potential as an efficient drug delivery system. Future research should focus on in vivo evaluation, long-term stability, and patient adherence for clinical applications.
Keywords: Inflammation, Ailanthus excels, Tridax procumbens, Buccal Patch, UV-Vis spectroscopy
How to cite this article: Yogesh B. Ubarhande, Ashish Singh Parihar. Design and Characterizations of Buccal Patch Containing Extracts of Ailanthus excelsa and Tridax procumbens for the Treatment of Inflammation. International Journal of Drug Delivery Technology. 2025;15(1):205-15. doi: 10.25258/ijddt.15.1.29
REFERENCES
- Wellen, K. E.; Hotamisligil, G. S. Inflammation, Stress, and Diabetes. Clin. Invest. 2005, 115 (5), 1111–1119. https://doi.org/10.1172/JCI200525102.
- Chauhan, A.; Chauhan, S. B. Inflammation and Cancer. In Inflammation and Chronic Disorders: The Secret Connection; 2023; pp 29–61. https://doi.org/10.4240/wjgs.v4.i3.62.
- Kumar, D.; Bhat, Z. A.; Singh, P.; Shah, M. Y.; Bhujbal, S. S. Ailanthus Excelsa Roxb. Is Really a Plant of Heaven. J. Pharmacol. 2010, 6 (5), 535–550. https://doi.org/10.3923/ijp.2010.535.550.
- Sapkal, P. R.; Tatiya, A. U.; Firke, S. D.; Redasani, V. K.; Gurav, S. S.; Ayyanar, M.; Jamkhande, P. G.; Surana, S. J.; Mutha, R. E.; Kalaskar, M. G. Phytochemical Profile, Antioxidant, Cytotoxic and Anti-Inflammatory Activities of Stem Bark Extract and Fractions of Ailanthus Excelsa Roxb.: In Vitro, in Vivo and in Silico Approaches. Heliyon 2023, 9 (5). https://doi.org/10.1016/j.heliyon.2023.e15952.
- Andriana, Y.; Xuan, T. D.; Quy, T. N.; Minh, T. N.; Van, T. M.; Viet, T. D. Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax Procumbens L. Foods 2019, 8 (1). https://doi.org/10.3390/foods8010021.
- Devi, K.; Soni, S.; Tripathi, V.; Pandey, R.; Moharana, B. Ethanolic Extract of Tridax Procumbens Mitigates Pulmonary Inflammation via Inhibition of NF-ΚB/P65/ERK Mediated Signalling in an Allergic Asthma Model. Phytomedicine 2022, 99. https://doi.org/10.1016/j.phymed.2022.154008.
- Berlin Grace, V. M.; Viswanathan, S.; David Wilson, D.; Jagadish Kumar, S.; Sahana, K.; Maria Arbin, E. F.; Narayanan, J. Significant Action of Tridax Procumbens L. Leaf Extract on Reducing the TNF-α and COX-2 Gene Expressions in Induced Inflammation Site in Swiss Albino Mice. Inflammopharmacology 2020, 28 (4), 929–938. https://doi.org/10.1007/s10787-019-00634-0.
- Patel, V. M.; Prajapati, B. G.; Patel, M. M. Design and Characterization of Chitosan-Containing Mucoadhesive Buccal Patches of Propranolol Hydrochloride. Acta Pharm. 2007, 57 (1), 61–72. https://doi.org/10.2478/v10007-007-0005-9.
- Rohani Shirvan, A.; Hemmatinejad, N.; Bahrami, S. H.; Bashari, A. Fabrication of Multifunctional Mucoadhesive Buccal Patch for Drug Delivery Applications. Biomed. Mater. Res. - Part A 2021, 109 (12), 2640–2656. https://doi.org/10.1002/jbm.a.37257.
- Jafar, M.; Ali, S. Development and Evaluation of Meloxicam Solid Dispersion Loaded Buccal Patches. Appl. Pharm. Sci. 2011, 1 (3), 77–82.
- Hao, J.; Heng, P. W. S. Buccal Delivery Systems. Drug Dev. Ind. Pharm. 2003, 29 (8), 821–832. https://doi.org/10.1081/DDC-120024178.
- Pelin, I. M.; Suflet, D. M. Mucoadhesive Buccal Drug Delivery Systems Containing Polysaccharides. Chem. Technol. 2020, 54 (9–10), 889–902. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.86.
- Palem, C. R.; Gannu, R.; Doodipala, N.; Yamsani, V. V.; Yamsani, M. R. Transmucosal Delivery of Domperidone from Bilayered Buccal Patches: In Vitro, Ex Vivo and in Vivo Characterization. Pharm. Res. 2011, 34 (10), 1701–1710. https://doi.org/10.1007/s12272-011-1014-2.
- Lee, R. Statistical Design of Experiments for Screening and Optimization. Chemie-Ingenieur-Technik 2019, 91 (3), 191–200. https://doi.org/10.1002/cite.201800100.
- Riter, L. S.; Vitek, O.; Gooding, K. M.; Hodge, B. D.; Julian, R. K. Statistical Design of Experiments as a Tool in Mass Spectrometry. Mass Spectrom. 2005, 40 (5), 565–579. https://doi.org/10.1002/jms.871.
- Popovici, V.; Matei, E.; Cozaru, G. C.; Bucur, L.; Gîrd, C. E.; Schröder, V.; Ozon, E. A.; Mitu, M. A.; Musuc, A. M.; Petrescu, S.; Atkinson, I.; Rusu, A.; Mitran, R. A.; Anastasescu, M.; Caraiane, A.; Lupuliasa, D.; Aschie, M.; Dumitru, E.; Badea, V. Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea Barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC. Antioxidants 2022, 11 (9). https://doi.org/10.3390/antiox11091801.
- UV-VIS Spectroscopy and Its Applications. Choice Rev. Online 1993, 30 (11). https://doi.org/10.5860/choice.30-6183.
- Ahmad, A.; Ayub, H. Fourier Transform Infrared Spectroscopy (FTIR) Technique for Food Analysis and Authentication. In Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables; 2022; pp 103–142. https://doi.org/10.1007/978-981-19-5422-1_6.
- Schick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Bioanal. Chem. 2009, 395 (6), 1589–1611. https://doi.org/10.1007/s00216-009-3169-y.
- Menczel, J. D.; Andre, R.; Kohl, W. S.; Krongauz, V. V.; Lőrinczy, D.; Reading, M.; Grebowicz, J. Fundamentals of DSC. In Handbook of Differential Scanning Calorimetry: Techniques, Instrumentation, Inorganic, Organic and Pharmaceutical Substances; 2023; pp 1–189. https://doi.org/10.1016/B978-0-12-811347-9.00005-9.