International Journal of Drug Delivery Technology
Volume 15, Issue 1

Studies on Characterizations, Solubility and Dissolution of Multicompoent Inclusion Complex of Domperidone using Cyclodextrin/Cyclodextrin Derivatives with Different Auxiliary Agents

Priya Patil*, Subhash Kumbhar 

School of Pharmaceutical Sciences, Sanjay Ghodawat University, Atigre, Kolhapur: 416118, Maharashtra, India.

Received: 19th Dec, 2024; Revised: 17th Jan, 2025; Accepted: 29th Jan, 2025; Available Online: 25th March, 2025 

ABSTRACT

Domperidone (DOMP) is an antiemetic drug, although it has low bioavailability and isn't very soluble. Our solution to these issues is the Multicompoent inclusion complex (MCIC), which we would make by combining cyclodextrin and its derivatives with various auxiliary agents/auxiliary substances (AXAs), such as citric acid, mannose, and L-arginine, among others. Compared to β-CD and H-β-CD, first tests reveal that Domperidone with M-β-Cyclodextrin produces better results.  Auxiliary agents, such as citric acid, were chosen for use in multicomponent inclusion complexes. In order to determine whether method was more effective in increasing domperidone solubility, researchers compared the physical mixing method with the kneading method for preparing the multicomposite inclusion complex. Phase solubility experiments for multicompoent inclusion complexes revealed considerable improvements in complexation efficiency and stability constants. In order to characterize the multicompoent inclusion, XRD, DSC, FT-IR, and NMR were employed. When compared to the pure medication alone, the complexes demonstrated an increase in drug solubility and release through in vitro dissolving and saturation solubility experiments. This study concluded that AXAs and methyl-β-cyclodextrin have a synergistic action that increases the solubility of DOMP and, perhaps, its bioavailability.

Keywords: Domperidone, Multicompoent-inclusion-complex, M-β-Cyclodextrin, Auxiliary agent.

How to cite this article: Priya Patil, Subhash Kumbhar. Studies on Characterizations, Solubility and Dissolution of Multicompoent Inclusion Complex of Domperidone using Cyclodextrin/Cyclodextrin Derivatives with Different Auxiliary Agents. International Journal of Drug Delivery Technology. 2025;15(1):222-29. doi: 10.25258/ijddt.15.1.31

REFERENCES

  1. Takagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L. X., & Amidon, G. L. (2006). A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Molecular pharmaceutics, 3(6), 631-643.https://doi.org/10.1021/mp0600182.
  2. Kalepu, S., & Nekkanti, V. (2016). Improved delivery of poorly soluble compounds using nanoparticle technology: a review. Drug delivery and translational research, 6, 319-332. https://doi.org/10.1007/s13346-016-0283-1
  3. Arima, H., Hayashi, Y., Higashi, T., & Motoyama, K. (2015). Recent advances in cyclodextrin delivery techniques. Expert opinion on drug delivery, 12(9), 1425-1441. https://doi.org/10.1517/17425247.2015.1026893
  4. Brewster, M. E., & Loftsson, T. (2007). Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews, 59(7), 645-666. https://doi.org/10.1016/j.addr.2007.05.012
  5. Magnusdottir, A., Másson, M., & Loftsson, T. (2002). Self association and cyclodextrin solubilization of NSAIDs. Journal of inclusion phenomena and macrocyclic chemistry, 44, 213-218. https://doi.org/10.1023/A:1023079322024
  6. Loftsson, T., & Brewster, M. E. (2012). Cyclodextrins as functional excipients: methods to enhance complexation efficiency. Journal of pharmaceutical sciences, 101(9), 3019-3032.https://doi.org/10.1002/jps.23077.
  7. Miranda, J. C. D., Martins, T. E. A., Veiga, F., & Ferraz, H. G. (2011). Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian journal of pharmaceutical sciences, 47, 665-681. https://doi.org/10.1590/s1984- 82502011000400003.
  8. Patil, P., Kumbhar, S., Ghorpade, V. (2024). Auxiliary substances for enhancement of complexation efficiency and dissolution rate of drug-cyclodextrin complexes. International Journal of Drug Delivery Technology. 14(1):598-608. 10.25258/ijddt.14.1.81
  9. Miranda, J. C. D., Martins, T. E. A., Veiga, F., & Ferraz, H. G. (2011). Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian journal of pharmaceutical sciences, 47, 665-681. https://doi.org/10.1590/S1984-82502011000400003
  10. Ghodke, D. S., Nakhat, P. D., Yeole, P. G., Naikwade, N. S., Magdum, C. S., & Shah, R. R. (2009). Preparationa and Characterization of domperidone Inclusion complexes with cyclodextrin: Influence of preparation method. Iranian Journal of Pharmaceutical Research, 8(3), 145-151. https://doi.org/10.22037/ijpr.2010.803
  11. Sherje, A. P., & Londhe, V. (2015). Ternary inclusion complex of paliperidone with β-cyclodextrin and hydrophilic polymer for solubility and dissolution enhancement. Journal of Pharmaceutical Innovation, 10, 324-334.https://doi.org/10.1016/ j.ejps.2004.09.003
  12. Higuchi, T. J. A. A. C. I., & Connors, K. A. (1965). Adv anal chem instrum. Phase-solubility techniques, 4, 117-212.
  13. Yap, K. L., Liu, X., Thenmozhiyal, J. C., & Ho, P. C. (2005). Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis. European Journal of Pharmaceutical Sciences, 25(1), 49-56. https://doi.org/10.1016/j.ejps.2005.01.021
  14. Wen, X., Tan, F., Jing, Z., & Liu, Z. (2004). Preparation and study the 1: 2 inclusion complex of carvedilol with β-cyclodextrin. Journal of pharmaceutical and biomedical analysis, 34(3), 517-523. https://doi.org/10.1016/S0731-7085(03)00576-4
  15. Londhe, V., & Shirsat, R. (2018). Formulation and characterization of fast-dissolving sublingual film of iloperidone using Box–Behnken design for enhancement of oral bioavailability. AAPS PharmSciTech, 19, 1392-1400. https://doi.org/10.1208/s12249-018-0954-y
  16. Challa, R., Ahuja, A., Ali, J., & Khar, R. (2005). Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech, 6, E329-E357. https://doi.org/10.1208/pt060243
  17. Nagpal, M., Kaur, L., Chander, J., & Sharma, P. (2016). Dissolution enhancement of domperidone fast disintegrating tablet using modified locust bean gum by solid dispersion technique. 10.15415/jptrm.2016.41001
  18. Tyagi, R., & Dhillon, V. (2012). Enhancement of solubility and dissoultion rate of domperidone using cogrinding and kneading technique. Journal of drug delivery and therapeutics, 2(4).
  19. Akbari, B. V., Valaki, B. P., Mardiya, V. H., Akbari, A. K., & Vidyasagar, G. (2011). Enhancement of solubility and dissolution rate of rosuvastatin calcium by complexation with β cyclodextrin. Int J Pharm Biol Arch, 2(1), 511-20.
  20. Mura, P., Faucci, M. T., Manderioli, A., Bramanti, G., & Parrini, P. (1999). Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug development and industrial pharmacy, 25(3), 257-264. https://doi.org/10.1081/DDC-100102169
  21. Ali, S. K., & Al-Khedairy, E. B. (2019). Solubility and dissolution enhancement of atorvastatin calcium using solid dispersion adsorbate technique. Iraqi Journal of Pharmaceutical Sciences, 28(2), 105-114. https://doi.org/10.31351/vol28iss2pp105-114
  22. Sherje, A. P., Kulkarni, V., Murahari, M., Nayak, U. Y., Bhat, P., Suvarna, V., & Dravyakar, B. (2017). Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: formulation characterization and molecular modeling studies. Molecular pharmaceutics, 14(4), 1231-1242. https://doi.org/10.1021/acs.molpharmaceut.6b01115
  23. Patel, M., & Hirlekar, R. (2019). Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug. Asian Journal of Pharmaceutical Sciences, 14(1), 104-115. https://doi.org/10.1016/j.ajps.2018.02.007.
  24. Pokharkar, V., Khanna, A., Venkatpurwar, V., Dhar, S., & Mandpe, L. (2009). Ternary complexation of carvedilol, β-cyclodextrin and citric acid for mouth-dissolving tablet formulation. Acta pharmaceutica, 59(2), 121-132. https:// doi.org/10.2478/v10007-009-0001-3.
  25. Ranpise, N. S., Kulkarni, N. S., Mair, P. D., & Ranade, A. N. (2010). Improvement of water solubility and in vitro dissolution rate of aceclofenac by complexation with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Pharmaceutical development and technology, 15(1), 64-70.3109/10837450903002165.
  26. Kamal, D., Pabreja, K., & Ramana, M. V. (2010). Preparación, Caracterización y Evaluación in vitro de dispersiones sólidas aceclofenaco. Ars Pharmaceutica (Internet), 51(1), 57-76. 10.30827/ars
  27. Shaikh, J., Deshmane, S. V., Purohit, R. N., & Biyani, K. R. (2015). Behavioural study of cyclodextrin inclusion complex on enhancement of solubility of aceclofenac. Indian Drugs, 52, 19-23. http://dx.doi.org/10.53879/id.52.11.10325
  28. Kavitha, K., Puneeth, K. P., & Mani, T. T. (2010). Development and evaluation of Rosiglitazone maleate floating tablets using natural gums. 50(1), 97-111
  29. Bamburowicz-Klimkowska, M., Zywiec, K., Potentas, A., & Szutowski, M. (2007). Impact of the changes in P-glycoprotein activity on domperidone pharmacokinetics in rat plasma. Pharmacological reports, 59(6), 752.
  30. Gibaldi, M. I. L. O., & Perrier, D. O. N. A. L. D. (1982). Pharmacokinetics (2nd edn). Marcelly Dekker: New York.