Anti-Inflammatory Activity of Arquita ancashiana Nanoemulgel: In vitro and In vivo Evaluation
Kondapure A A 1*, Koumaravelou K2
1 Dayanand Institute of Pharmacy, Latur, Maharashtra, India
2Department of Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India.
Received: 28th Oct, 2024; Revised: 17th Dec, 2024; Accepted: 21st Jan, 2025; Available Online: 25th Mar, 2025
ABSTRACT
The present study investigates the anti-inflammatory potential of Arquita ancashiana extracts and their nano formulations. The ethanol and aqueous extracts were obtained using Soxhlet & maceration extraction methods respectively, yielding semi-solid dark green residues with a percentage yield of 20% and 20.5%, respectively. In membrane stabilization assay, the ethanol extract exhibited a higher stabilization effect (IC₅₀ = 475.76 μg/mL) in comparison to aqueous extract (IC₅₀ = 815.14 μg/mL), though both remained less potent than the standard Diclofenac sodium (IC₅₀ = 199.62 μg/mL). A nano emulsion of Arquita ancashiana was successfully formulated using a surfactant: co-surfactant ratio of 3:1, and thermodynamic stability studies confirmed its stability. Physicochemical characterization revealed optimal globule size (85.46–91.57 nm), high zeta potential (-14.7 to -38.5 mV), and favorable viscosity. The nano emulgel was evaluated using a carrageenan-induced paw edema model, demonstrating significant anti-inflammatory activity, though slightly less effective than Diclofam Gel. ELISA analysis revealed a marked reduction in TNF-α levels in the nano emulgel-treated group, further supporting its anti-inflammatory potential. These findings suggest that Arquita ancashiana nano emulgel could serve as a promising natural alternative for inflammation management.
Keywords: Arquita ancashiana, anti-inflammatory activity, nanoemulsion gel, membrane stabilization assay, carrageenan-induced paw edema
How to cite this article: Kondapure A A, Koumaravelou K. Anti-Inflammatory Activity of Arquita ancashiana Nanoemulgel: In vitro and In vivo Evaluation. International Journal of Drug Delivery Technology. 2025;15(1):271-78. doi: 10.25258/ijddt.15.1.38
REFERENCES
- El-Gabalawy H, Guenther LC, Bernstein CN. Epidemiology of immune-mediated inflammatory diseases: Incidence, prevalence, natural history, and comorbidities. Journal of Rheumatology. 2010;37(1):2–10. doi: 10.3899/jrheum.091461.
- Maddipati KR. Distinct etiology of chronic inflammation – implications on degenerative diseases and cancer therapy. Frontiers in Immunology. 2024;15:1460302. doi: 10.3389/fimmu.2024.1460302.
- Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. 2016;21(10):1321. doi: 10.3390/molecules21101321.
- Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pacific Journal of Clinical Nutrition. 2006;15(2):143–152.
- Wahab SMA, Jantan I, Haque MA, Arshad L. Exploring the leaves of Annona muricata as a source of potential anti-inflammatory and anticancer agents. Frontiers in Pharmacology. 2018;9:661. doi: 10.3389/fphar.2018.00661.
- Acero N, Muñoz-Mingarro D, Navarro I, León-González AJ, Martín-Cordero C. Phytochemical analysis and anti-inflammatory potential of Acanthus mollis rhizome hexane extract. Pharmaceuticals. 2023;16(2):159. doi: 10.3390/ph16020159.
- Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla Journal of Nanomedicine & Nanotechnology. 2014;5(1):190. doi: 10.4172/2157-7439.1000190.
- Shehata TM, Elnahas HM, Elsewedy HS. Development, characterization and optimization of the anti-inflammatory influence of meloxicam loaded into a Eucalyptus oil-based nanoemulgel. 2022;8(5):262. doi: 10.3390/gels8050262.
- Soliman WE, Shehata TM, Mohamed ME, Younis NS, Elsewedy HS. Enhancement of curcumin anti-inflammatory effect via formulation into myrrh oil-based nanoemulgel. 2021;13(4):577. doi: 10.3390/polym13040577.
- Morsy MA, Abdel-Latif RG, Nair AB, Venugopala KN, Ahmed AF, Elsewedy HS, Shehata TM. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. 2019;11(11):609. doi: 10.3390/pharmaceutics11110609.
- Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, Elmarzugi NA. Nanoemulsion and nanoemulgel as a topical formulation. Pharmaceutical Science. 2015;25(3):126–134.
- Ojha B, Jain VK, Gupta S, Talegaonkar S, Jain K. Nanoemulgel: a promising novel formulation for treatment of skin ailments. Polymer Bulletin. 2022;79(5):2675–2697. doi: 10.1007/s00289-021-03729-3.
- Strugnell C. A modified Soxhlet procedure to determine fat in matured cheese. Irish Journal of Food Science and Technology. 1989;13(1):53–60.
- Koga D, Kusumi S, Watanabe T. Optimizing the reaction temperature to facilitate an efficient osmium maceration procedure. Biomedical Research. 2020;41(4):161–167. doi: 10.2220/biomedres.41.161.
- Ali M, Akhter R, Narjish SN, Shahriar M, Bhuiyan MA. Studies of preliminary phytochemical screening, membrane stabilizing activity, thrombolytic activity and in-vitro antioxidant activity of leaf extract of Citrus hystrix. International Journal of Pharmaceutical Sciences and Research. 2015;6(5):1921–1930.
- Al Mamun MR, Ahmed T, Reza MSA, Rahman MH. Phytochemical investigation, fatty acid analysis and in vitro membrane stabilizing activity of the roots of Amaranthus spinosus Dhaka University Journal of Science. 2021;69(1):55–64. doi: 10.3329/dujs.v69i1.54625.
- Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science. 2004;108–109:303–318. doi: 10.1016/j.cis.2003.10.023.
- Gaber DA, Alsubaiyel AM, Alabdulrahim AK, Alharbi HZ, Aldubaikhy RM, Alharbi RS, Albishr WK, Mohamed HA. Nano-emulsion based gel for topical delivery of an anti-inflammatory drug: in vitro and in vivo evaluation. Drug Design, Development and Therapy. 2023;17:407475. doi: 10.2147/DDDT.S407475.
- Schuh RS, Bruxel F, Teixeira HF. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Química Nova. 2014;37(3):186–193. doi: 10.5935/0100-4042.20140186.
- Liu W, Hu M, Liu W, Xue C, Xu H, Yang XL. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. International Journal of Pharmaceutics. 2008;364(1):135–141. doi: 10.1016/j.ijpharm.2008.08.013.
- Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA. Preparation and characterization of a curcumin nanoemulsion gel for the effective treatment of mycoses. Scientific Reports. 2023;13:49328. doi: 10.1038/s41598-023-49328-2.
- Sharma A, Singh AP, Harikumar SL. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design. Drug Development and Industrial Pharmacy. 2020;46(2):1527–1538. doi: 10.1080/03639045.2020.1721527.
- Latif MS, Nawaz A, Asmari M, Uddin J, Ullah H, Ahmad S. Formulation development and in vitro/in vivo characterization of methotrexate-loaded nanoemulsion gel formulations for enhanced topical delivery. 2023;9(1):3. doi: 10.3390/gels9010003.
- Sah A, Aggarwal G, Jain GK, Zaidi SMA, Naseef PP, Kuruniyan MS, Zakir F. Design and development of a topical nanogel formulation comprising of a Unani medicinal agent for the management of pain. 2023;9(10):794. doi: 10.3390/gels9100794.
- Alhasso B, Ghori MU, Conway BR. Development of a nanoemulgel for the topical application of mupirocin. Pharmaceutics. 2023;15(10):2387. doi: 10.3390/pharmaceutics15102387.
- Lacerda RB, de Lima CKF, da Silva LL, Romeiro NC, Miranda ALP, Barreiro EJ, Fraga CAM. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a] pyridine symbiotic prototypes. Bioorganic & Medicinal Chemistry. 2009;17(2):698-705. doi: 10.1016/j.bmc.2008.11.018.
- Oliveira-Tintino CD de M, Pessoa RT, Fernandes MNM, Alcântara IS, da Silva BAF, de Oliveira MRC, Martins AOBPB, da Silva M do S, Tintino SR, Rodrigues FFG, da Costa JGM, de Lima SG, Kerntopf MR, da Silva TG, de Menezes IRA. Anti-inflammatory and anti-edematogenic action of the Croton campestris St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine. 2018;41:1-8. doi: 10.1016/j.phymed.2018.02.004.
- Vysakh A, Jayesh K, Helen LR, Jyothis M, Latha MS. Acute oral toxicity and anti-inflammatory evaluation of methanolic extract of Rotula aquatica roots in Wistar rats. Journal of Ayurveda and Integrative Medicine. 2020;11(2):114-121. doi: 10.1016/j.jaim.2017.09.007.
- Lucetti DL, Lucetti ECP, Bandeira MAM, Veras HNH, Silva AH, Leal LKAM, Lopes AA, Alves VCC, Silva GS, Brito GA, Viana GB. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. Journal of Inflammation. 2010; 7:60. doi: 10.1186/1476-9255-7-60.