International Journal of Drug Delivery Technology
Volume 15, Issue 1

Formulation Design and Development of Azilsartan Nano-emulsion for the Solubility Enhancement

Ravikiran M Suryawanshi*, Ritu M Gilhotra, Prashant Kumar Dhakad, Tapasvi Gupta

Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India

Received: 12th Jan, 2025; Revised: 17th Feb, 2025; Accepted: 4th Mar, 2025; Available Online: 25th Mar, 2025

Abstract

The study aims to formulate and refine a nanoemulsion containing azilsartan to improve the solubility and bioavailability of antihypertensive drug, which has low water solubility. A factorial design technique was employed to develop 14 nanoemulsion formulations with varying amounts of olive oil, Tween 80, and PEG-400. Formulations were analyzed for particle size, Zeta Potential (ZP), pH, viscosity, and drug content. FTIR and DSC studies validated the compatibility of drug and excipient.  The improved formulation (F12) demonstrated a mean particle size of 249 nm, a ZP of -22.3 mV, and a drug content of 98.38%. SEM and TEM analysis showed spherical droplets exhibiting smooth surfaces.  In vitro release experiments indicated a sustained drug release, with 98.25% released over an 8-hour period.  The stability investigations verified that the formulation maintained stability for three months under accelerated situations. Response surface methodology and contour plots indicated a robust design space where formulation parameters could be optimized to achieve desired quality attributes. The nano-emulsion approach successfully improved the aqueous solubility of azilsartan while maintaining physicochemical stability. This novel formulation strategy shows promise for enhancing the therapeutic efficacy of azilsartan and potentially other poorly water-soluble drugs. Further in vivo studies are warranted to evaluate the pharmacokinetic profile and bioavailability enhancement of the optimized azilsartan nanoemulsion formulation.

Keywords: Nano-emulsion, Azilsartan, antihypertensive, FTIR, DSC, Solubility Enhancement

How to cite this article: Ravikiran M Suryawanshi, Ritu M Gilhotra, Prashant Kumar Dhakad, Tapasvi Gupta. Formulation Design and Development of Azilsartan Nano-emulsion for the Solubility Enhancement. International Journal of Drug Delivery Technology, 2025;15(1):285-95. doi: 10.25258/ijddt.15.1.40

REFERENCES

  1. Ratria, A. K.; Muhammad, R. R.; Nurrobi Y. A. Right Ventricular Free-Wall Longitudinal Strain ( RVfwLS ) as a Prognostic Factor in Patients with Pulmonary Arterial Hypertension ( PAH ): A Systematic Review and Meta-Analysis. J. Med. Pharm. Chem. Res. 2025, 7 (December 2024), 2384–2396.
  2. Arina, C. A.; Khairina, Y. Gender Differences in Risk Factors and Clinical Profiles of Ischemic Stroke Patients: A Cross-Sectional Study at Adam Malik Hospital, Medan. J. Med. Pharm. Chem. Res. 2025, 7 (7), 1496–1502. https://doi.org/10.48309/jmpcr.2025.479250.1438.
  3. Ito, S.; Nishiyama, Y.; Sugiura, K.; Enya, K. Safety and Efficacy of Azilsartan in Paediatric Patients with Hypertension: A Phase 3, Single-Arm, Open-Label, Prospective Study. Clin. Exp. Nephrol. 2022, 26 (4), 350–358. https://doi.org/10.1007/s10157-021-02159-9.
  4. Mizutani, N. Effect of Azilsartan on Blood Pressure in Patients with Uncontrolled Hypertension. Ther. Res. 2013, 34 (4), 507–519.
  5. Pradhan, A.; Tiwari, A.; Sethi, R. Azilsartan: Current Evidence and Perspectives in Management of Hypertension. Int. J. Hypertens. 2019. https://doi.org/10.1155/2019/1824621.
  6. Shakeel, F.; Faisal, M. S. Nanoemulsion: A Promising Tool for Solubility and Dissolution Enhancement of Celecoxib. Pharm. Dev. Technol. 2010, 15 (1), 53–56. https://doi.org/10.3109/10837450902967954.
  7. Shaikh, N. M.; Vijayendra Swamy, S. M.; NARSING, N. S.; Kulkarni, K. B. Formulation and Evaluation of Nanoemulsion for Topical Application. J. Drug Deliv. Ther. 2019, 9 (4-s), 370–375. https://doi.org/10.22270/jddt.v9i4-s.3301.
  8. Kumar, G.; Virmani, T.; Pathak, K.; Kamaly, O. Al; Saleh, A. Central Composite Design Implemented Azilsartan Medoxomil Loaded Nanoemulsion to Improve Its Aqueous Solubility and Intestinal Permeability: In Vitro and Ex Vivo Evaluation. Pharmaceuticals 2022, 15 (11). https://doi.org/10.3390/ph15111343.
  9. Kumar, R. R.; Krishnan, K.; Sankararao, G.; Samathoti, P.; Kumar, J. P.; Bagade, O. M.; Teja, K.; Reddy, K.; Gopisetti, J. Biochemical Engineering of Green Nanomaterials for Targeted Drug Delivery and Therapeutic Applications. J. Chem. Rev. 2025, 6 (3), 191–215.
  10. Vattikundala, P.; Chaudhary, S.; Sumithra, M. Design, Preparation, Characterization, and Evaluation of NR4A1 Agonist Novel 6-Mercaptopurine Monohydrate Loaded Nanostructured Lipid Carriers Suspension for Enhanced Solubility and Invivo Bioavailability. J. Med. Pharm. Chem. Res. 2025, 7 (6), 1059–1078. https://doi.org/10.48309/jmpcr.2025.472478.1381.
  11. Rajab, N. A.; Jassem, N. A. A Design and in Vitro Evaluation of Azilsartan Medoxomil as a Self- Dispersible Dry Nanosuspension. Der Pharm. Sin. 2018, 9 (1), 12–32.
  12. Adeeyinwo, C. E.; Okorie; Idowu, G. O. Basic Calibration of UV/ Visible Spectrophotometer. Int. J. Sci. Technol. 2013, 2 (3), 247–251.
  13. Singh, R.; Wu, B.; Tang, L.; Liu, Z.; Hu, M. Identification of the Position of Mono- O-Glucuronide of Flavones and Flavonols by Analyzing Shift in Online UV Spectrum (Λmax) Generated from an Online Diode Array Detector. J. Agric. Food Chem. 2010, 58 (17), 9384–9395. https://doi.org/10.1021/jf904561e.
  14. Fadlelmoula, A.; Pinho, D.; Carvalho, V. H.; Catarino, S. O.; Minas, G. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines 2022, 13 (2). https://doi.org/10.3390/mi13020187.
  15. Munajad, A.; Subroto, C.; Suwarno. Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated Thermal Aging. Energies 2018, 11 (2). https://doi.org/10.3390/en11020364.
  16. Mutlur, S. Thermal Analysis of Composites Using DSC. Adv. Top. Charact. Compos. 2004, 11–33.
  17. Schick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Anal. Bioanal. Chem. 2009, 395 (6), 1589–1611. https://doi.org/10.1007/s00216-009-3169-y.
  18. Ghanbari, A.; Sarbaz, Y.; Jouyban-Gharamaleki, V.; Jouyban-Gharamaleki, K.; Soleymani, J.; Jouyban, A. An Improved Automated Setup for Solubility Determination of Drugs. Pharm. Sci. 2016, 22 (3), 210–214. https://doi.org/10.15171/PS.2016.33.
  19. Xu, H.; Kang, L.; Qin, J.; Lin, J.; Xue, M.; Meng, Z. Solubility of Azilsartan in Methanol, Ethanol, Acetonitrile, n-Propanol, Isopropanol, Tetrahydrofuran, and Binary Solvent Mixtures between 293.15 and 333.15 K. ACS Omega 2020, 5 (11), 6141–6145. https://doi.org/10.1021/acsomega.0c00156.
  20. Gao, L.; Zhang, X. R. Synthesis of Two Novel Azilsartan Cocrystals: Preparation, Physicochemical Characterization and Solubility Studies. Crystals 2020, 10 (9), 1–11. https://doi.org/10.3390/cryst10090739.
  21. Doğantürk, M.; Seçilmiş Canbay, H. Drug-Excipient Compatibility Studies In Binary Mixtures of Tadalafil by Using DSC, TGA and FTIR. Süleyman Demirel Üniversitesi Sağlık Bilim. Derg. 2023, 14 (2), 130–141. https://doi.org/10.22312/sdusbed.1197638.
  22. Atun, S.; Aznam, N.; Arianingrum, R.; Priastomo, Y.; Cholil, R. Nanoemulsion Formulation Gel and Ethanol Extract of Aloe Vera , Antibacterial Activity Test , and Prediction of Interaction Mechanism against PBP-3 Receptor. J. Med. Chem. Sci. 2025, 8, 106–118. https://doi.org/10.26655/JMCHEMSCI.2025.1.10.
  23. Patel, P.; Ahir, K.; Patel, V.; Manani, L.; Patel, C. Drug-Excipient Compatibility Studies : First Step for Dosage Form Development. Pharma Innov. J. 2015, 4 (5), 14–20.
  24. Jassem, N. A.; Rajab, N. A. Formulation and in Vitro Evaluation of Azilsartan Medoxomil Nanosuspension. Int. J. Pharm. Pharm. Sci. 2017, 9 (7), 110. https://doi.org/10.22159/ijpps.2017v9i7.18917.
  25. Sharma, P.; Tailang, M. Design, Optimization, and Evaluation of Hydrogel of Primaquine Loaded Nanoemulsion for Malaria Therapy. Futur. J. Pharm. Sci. 2020, 6 (1). https://doi.org/10.1186/s43094-020-00035-z.
  26. Mehmood, T.; Ahmad, A.; Ahmed, A.; Ahmed, Z. Optimization of Olive Oil Based O/W Nanoemulsions Prepared through Ultrasonic Homogenization: A Response Surface Methodology Approach. Food Chem. 2017, 229, 790–796. https://doi.org/10.1016/j.foodchem.2017.03.023.
  27. Zeta Potential Analysis of Nanoparticles. Nanocomposix Publ. 2012, 1–6.
  28. Takeshita, Y.; Johnson, K. S.; Coletti, L. J.; Jannasch, H. W.; Walz, P. M.; Warren, J. K. Assessment of PH Dependent Errors in Spectrophotometric PH Measurements of Seawater. Mar. Chem. 2020, 223. https://doi.org/10.1016/j.marchem.2020.103801.
  29. Li, N.; Fan, L.; Wu, B.; Dai, G.; Jiang, C.; Guo, Y.; Wang, D. Preparation and in Vitro/in Vivo Evaluation of Azilsartan Osmotic Pump Tablets Based on the Preformulation Investigation. Drug Dev. Ind. Pharm. 2019, 45 (7), 1079–1088. https://doi.org/10.1080/03639045.2019.1593441.
  30. Parveen, R.; Baboota, S.; Ali, J.; Ahuja, A.; Ahmad, S. Stability Studies of Silymarin Nanoemulsion Containing Tween 80 as a Surfactant. J. Pharm. Bioallied Sci. 2015, 7 (4), 321–324. https://doi.org/10.4103/0975-7406.168037.
  31. Khan, N. U.; Ali, A.; Khan, H.; Khan, Z. U.; Ahmed, Z. Stability Studies and Characterization of Glutathione-Loaded Nanoemulsion. J. Cosmet. Sci. 2018, 69 (4), 257–267.