International Journal of Drug Delivery Technology
Volume 15, Issue 1

Nanocapsules: A Promising Drug Delivery System for Poorly Bioavailable Drugs

M.C Sreekanth*1,2, V Muruganantham1*, B.S Venkateswarlu1, R Margaret Chandira1, S. Shanmuganathan3

1Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation- Deemed to be university (VMRFDU), Salem, 683008, Tamil Nadu, India.

2Department of Pharmaceutics, St John’s College of Pharmaceutical Sciences and Research, Kattappana, Kerala 685515, India.

3School of Pharmacy, Sri Balaji Vidyapeeth, SBV campus, Pillaiyarkuppam, Pondicherry, 607402, India.

Received: 24th Oct, 2024; Revised: 26th Dec, 2024; Accepted: 17th Jan, 2025; Available Online: 25th Mar, 2025

ABSTRACT

Nanocapsules propose a hopeful solution for recuperating the delivery of inadequately bio available medications, providing benefits such as increased solubility, enhanced bioavailability, and targeted delivery. They can summarize a wide range of therapeutic agents, improving efficacy and reducing side effects. Continued advancements in nanotechnology and materials science are enhancing nanocapsule design, opening doors for new treatments. Future research should prioritize optimizing these systems for clinical use and addressing stability and regulatory challenges. The victorious assimilation of nanocapsules into majority medicine could revolutionize treatment options for complex drug formulations.

Keywords: Nanocapsules, Drug Delivery system, poorly soluble drugs, bioavailability

How to cite this article: M.C Sreekanth, V Muruganantham, B.S Venkateswarlu, R Margaret Chandira, S. Shanmuganathan. Nanocapsules: A Promising Drug Delivery System For Poorly Bioavailable Drugs. International Journal of Drug Delivery Technology. 2025;15(1):316-28. doi: 10.25258/ijddt.15.1.44

REFERENCES

  1. Saharan VA, Kukkar V, Kataria M, Gera M, Choudhary K. Dissolution enhancement of drugs. part i: technologies and effect of carriers. Int J Health Res. 2009; 2:107- 124.
  2. Pant P, Bansal K, Therdana RPR, Padhee K, Sathapathy A, Kochhar PS, Micronization: an efficient tool for dissolution enhancement of dienogest. Int J Drug Dev Res. 2011; 3:329-333.
  3. Dilip V, Pawar AY, Patel JS, Rathi MN, Kothawade PI. Solubility enhancement of aceclofenac by solvent deposition method. Int J Pharm Tech Res. 2010; 2:843- 846.
  4. Goyal A, Kumar S, Nagpal M, Singh I, Arora S. Potential of novel drug delivery systems for herbal drugs. Ind J Pharm Edu Res. 2011; 45:225- 235.
  5. Sandhiya J, Avtar CR, Singh G, Aggarwal G. An overview on solubility enhancement techniques for poorly soluble drugs and solid dispersion as an eminent strategic approach. Int J Pharm Sci Res. 2012; 3:942- 956.
  6. Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4:94.
  7. Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv. 2017;8:947–56.
  8. Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed. 2012;7:3637.
  9. McNamara K, Tofail SA. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys. 2015;17:27981–95.
  10. Saadeh Y, Vyas D. Nanorobotic applications in medicine: current proposals and designs. Am J Robot Surg. 2014;1:4–11.
  11. Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces. 2014;6:14745–66.
  12. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3:133.
  13. Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.
  14. Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master AM, Sokolsky M, Kabanov AV. Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release. 2015;219:43–60.
  15. Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater. 2016;2016:20.
  16. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941.
  17. Kumari A, Kumar V, Yadav S. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012;7:34–42.
  18. Shastri, V.P. Non-degradable biocompatible polymers in medicine: Past, present and future. Curr. Pharm. Biotechnol. 2003, 4, 331–337.
  19. Almeida, J.P.M.; Chen, A.L.; Foster, A.; Drezek, R.J.N. In vivo biodistribution of nanoparticles. Nanomedicine 2011, 6, 815–835.
  20. Chen, H.; Wang, L.; Yeh, J.; Wu, X.; Cao, Z.; Wang, Y.A.; Zhang, M.; Yang, L.; Mao, H. Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PMPS copolymer coating. Biomaterials 2010, 31, 5397–5407.
  21. Boyer, C.; Whittaker, M.R.; Bulmus, V.; Liu, J.; Davis, T.P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2010, 2, 23–30.
  22. Li, P.; Dai, Y.-N.; Zhang, J.-P.; Wang, A.-Q.; Wei, Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. IJBS 2008, 4, 221–228.
  23. Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174.
  24. De Matteis, L.; Jary, D.; Lucía, A.; García-Embid, S.; Serrano-Sevilla, I.; Pérez, D.; Ainsa, J.A.; Navarro, F.P.; De la Fuente, J.M. New active formulations against M. tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules. Chem. Eng. J. 2018, 340, 181–191.
  25. Anversa Dimer, F.; De Souza Carvalho-Wodarz, C.; Goes, A.; Cirnski, K.; Herrmann, J.; Schmitt, V.; Patzold, L.; Abed, N.; De Rossi, C.; Bischo_, M.; et al. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine 2019, 24, 102125.
  26. Jeon, S.J.; Oh, M.; Yeo,W.-S.; Galvao, K.N.; Jeong, K.C. Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS ONE 2014, 9, e92723.
  27. Belbekhouche, S.; Mansour, O.; Carbonnier, B. Promising sub-100 nm tailor made hollow chitosan/poly(acrylic acid) nanocapsules for antibiotic therapy. J. Colloid Interface Sci. 2018, 522, 183–190.
  28. Shagholani, H.; Ghoreishi, S.M.; Mousazadeh, M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int. J. Biol. Macromol. 2015, 78, 130–136.
  29. Cafaggi, S.; Russo, E.; Stefani, R.; Leardi, R.; Caviglioli, G.; Parodi, B.; Bignardi, G.; De Totero, D.; Aiello, C.; Viale, M. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 2007, 121, 110–123.
  30. Douglas, K.L.; Tabrizian, M. E_ect of experimental parameters on the formation of alginate–chitosan nanoparticles and evaluation of their potential application as DNA carrier. J. Biomater. Sci. Polym. Ed. 2005, 16, 43–56.
  31. Wang, T.; Feng, Z.; He, N.; Wang, Z.; Li, S.; Guo, Y.; Xu, L. A novel preparation of nanocapsules from alginate-oligochitosan. J. Nanosci. Nanotechnol. 2007, 7, 4571–4574.
  32. Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym. 2006, 66, 1–7.
  33. George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. J. Control. Release 2006, 114, 1–14.
  34. Yang, J.; Chen, J.; Pan, D.; Wan, Y.; Wang, Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr. Polym. 2013, 92, 719–725.
  35. Mukhopadhyay, P.; Chakraborty, S.; Bhattacharya, S.; Mishra, R.; Kundu, P. pH-sensitive chitosan/alginate core-shell nanoparticles for e_cient and safe oral insulin delivery. Int. J. Biol. Macromol. 2015, 72, 640–648.
  36. Dhaneshwar, S.S.; Mini, K.; Gairola, N.; Kadam, S. Dextran: A promising macromolecular drug carrier. Indian J. Pharm. Sci. 2006, 68, 705–714.
  37. Tiyaboonchai, W.; Limpeanchob, N. Formulation and characterization of amphotericin B–chitosan–dextran sulfate nanoparticles. Int. J. Pharm. 2007, 329, 142–149.
  38. Crecente-Campo, J.; Lorenzo-Abalde, S.; Mora, A.; Marzoa, J.; Csaba, N.; Blanco, J.; Gonzalez-Fernandez, A.; Alonso, M.J. Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. J. Control. Release 2018, 286, 20–32.
  39. Anitha, A.; Deepagan, V.; Rani, V.D.; Menon, D.; Nair, S.; Jayakumar, R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr. Polym. 2011, 84, 1158–1164.
  40. Tekie, F.S.M.; Kiani, M.; Zakerian, A.; Pilevarian, F.; Assali, A.; Soleimani, M.; Dinarvand, R.; Arefian, E.; Atashi, A.; Amini, M. Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydr. Polym. 2017, 159, 66–75.
  41. Belbekhouche, S.; Oniszczuk, J.; Pawlak, A.; El Joukhar, I.; Go_n, A.; Varrault, G.; Sahali, D.; Carbonnier, B. Cationic poly(cyclodextrin)/alginate nanocapsules: From design to application as e_cient delivery vehicle of 4-hydroxy tamoxifen to podocyte in vitro. Colloids Surf. B Biointerfaces 2019, 179, 128–135.
  42. Ismail, M.; Du, Y.; Ling, L.; Li, X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int. J. Pharm. 2019, 562, 162–171.
  43. Abellan-Pose, R.; Teijeiro-Valino, C.; Santander-Ortega, M.J.; Borrajo, E.; Vidal, A.; Garcia-Fuentes, M.; Csaba, N.; Alonso, M.J. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: E_ect of the particle size. Int. J. Pharm. 2016, 509, 107–117.
  44. Mahmoudi, M.; Lynch, I.; Ejtehadi, M.R.; Monopoli, M.P.; Bombelli, F.B.; Laurent, S. Protein􀀀nanoparticle interactions: Opportunities and challenges. Chem. Rev. 2011, 111, 5610–5637.
  45. DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein polymer-based nanoparticles: Fabrication and medical applications. Int. J. Mol. Sci. 2018, 19, 1717.
  46. Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623.
  47. Gaber, M.; Hany, M.; Mokhtar, S.; Helmy, M.W.; Elkodairy, K.A.; Elzoghby, A.O. Boronic-targeted albumin-shell oily-core nanocapsules for synergistic aromatase inhibitor/herbal breast cancer therapy. Mater. Sci. Eng. C 2019, 105, 110099.
  48. Toita, R.; Murata, M.; Abe, K.; Narahara, S.; Piao, J.S.; Kang, J.-H.; Ohuchida, K.; Hashizume, M. Biological evaluation of protein nanocapsules containing doxorubicin. Int. J. Nanomed. 2013, 8, 1989–1999.
  49. Ren, D.; Kratz, F.; Wang, S.W. Protein nanocapsules containing doxorubicin as a pH-responsive delivery Msystem. Small 2011, 7, 1051–1060.
  50. Da Silva Júnior, W.F.; De Oliveira Pinheiro, J.G.; Moreira, C.D.; De Souza, F.J.; De Lima, Á.A. Alternative technologies to improve solubility and stability of poorly water-soluble drugs. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 281–305.
  51. Yao, M.H.; Ma, M.; Chen, Y.; Jia, X.Q.; Xu, G.; Xu, H.X.; Chen, H.R.; Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 2014, 35, 8197–8205.
  52. Gomes, M.L.S.; Da Silva Nascimento, N.; Borsato, D.M.; Pretes, A.P.; Nadal, J.M.; Novatski, A.; Gomes, R.Z.; Fernandes, D.; Farago, P.V.; Zanin, S.M.W. Long-lasting anti-platelet activity of cilostazol from poly(epsilon-caprolactone)-poly(ethylene glycol) blend nanocapsules. Mater. Sci. Eng. C 2019, 94, 694–702.
  53. Fustier, C.; Chang, T.M. PEG-PLA nanocapsules containing a nanobiotechnological complex of polyhemoglobin-tyrosinase for the depletion of tyrosine in melanoma: Preparation and in vitro characterisation. J. Nanomed. Biother. Discov. 2012, 2, 1–9.
  54. Haznedar, S.; Dortunc, B. Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Int. J. Pharm. 2004, 269, 131–140.
  55. De Gomes, M.G.; Pando Pereira, M.; Guerra Teixeira, F.E.; Carvalho, F.; Pinto Savall, A.S.; Ferreira Bicca, D.; Monteiro Fidelis, E.; Botura, P.E.; Weber Cibin, F.; Pinton, S.; et al. Assessment of unloaded polymeric nanocapsules with di_erent coatings in female rats: Influence on toxicological and behavioral parameters. Biomed. Pharm. 2020, 121, 109575.
  56. Diou, O.; Fattal, E.; Delplace, V.; Mackiewicz, N.; Nicolas, J.; Mériaux, S.; Valette, J.; Robic, C.; Tsapis, N. RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: Influence of pre or post-functionalization on capsule morphology. Eur. J. Pharm. Biopharm. 2014, 87, 170–177. Bahmani, B.; Gupta, S.; Vullev, V.I.; Anvari, B.; Upadhyayula, S. E_ect of polyethylene glycol coatings on uptake of indocyanine green loaded nanocapsules by human spleen macrophages in vitro. J. Biomed. Opt. 2011, 16, 051303.
  57. De Matteis, L.; Alleva, M.; Serrano-Sevilla, I.; Garcia-Embid, S.; Stepien, G.; Moros, M.; De la Fuente, J.M. Controlling properties and cytotoxicity of chitosan nanocapsules by chemical grafting. Mar. Drugs 2016, 14, 175.
  58. Bzowska, M.; Karabasz, A.; Szczepanowicz, K. Encapsulation of camptothecin into pegylated polyelectrolyte nanocarriers. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 36–42.
  59. Shi, C.; Zhong, S.; Sun, Y.; Xu, L.; He, S.; Dou, Y.; Zhao, S.; Gao, Y.; Cui, X. Sonochemical preparation of folic acid-decorated reductive-responsive epsilon-poly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. Mater. Sci. Eng. C 2020, 106, 110251.
  60. Rosa, P.; Friedrich, M.L.; Dos Santos, J.; Librelotto, D.R.N.; Maurer, L.H.; Emanuelli, T.; Da Silva, C.B.; Adams, A.I.H. Desonide nanoencapsulation with acai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. J. Photochem. Photobiol. B Biol. 2019, 199, 111606.
  61. Venturini, C.G.; Bruinsmann, F.A.; Contri, R.V.; Fonseca, F.N.; Frank, L.A.; D’Amore, C.M.; Ra_n, R.P.; Bu_on, A.; Pohlmann, A.R.; Guterres, S.S. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: Promising formulations against skin carcinoma. Eur. J. Pharm. Sci. 2015, 79, 36–43.
  62. Natrajan, D.; Srinivasan, S.; Sundar, K.; Ravindran, A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J. Food Drug Anal. 2015, 23, 560–568.
  63. Abulateefeh, S.R.; Alkawareek, M.Y.; Alkilany, A.M. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules. Int. J. Pharm. 2019, 558, 291–298.
  64. Cosco, D.; Paolino, D.; De Angelis, F.; Cilurzo, F.; Celia, C.; Di Marzio, L.; Russo, D.; Tsapis, N.; Fattal, E.; Fresta, M. Aqueous-core PEG-coated PLA nanocapsules for an e_cient entrapment of water soluble anticancer drugs and a smart therapeutic response. Eur. J. Pharm. Biopharm. 2015, 89, 30–39.
  65. Vrignaud, S.; Anton, N.; Passirani, C.; Benoit, J.P.; Saulnier, P. Aqueous core nanocapsules: A new solution for encapsulating doxorubicin hydrochloride. Drug Dev. Ind. Pharm. 2013, 39, 1706–1711.
  66. Lambert, G.; Fattal, E.; Pinto-Alphandary, H.; Gulik, A.; Couvreur, P. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. Int. J. Pharm. 2001, 214, 13–16.
  67. Hillaireau, H.; Le Doan, T.; Chacun, H.; Janin, J.; Couvreur, P. Encapsulation of mono-and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int. J. Pharm. 2007, 331, 148–152.
  68. Li, S.; He, Y.; Li, C.; Liu, X. In vitro release of protein from poly(butylcyanoacrylate) nanocapsules with an aqueous core. Colloid Polym. Sci. 2004, 283, 480–485.
  69. Gil, P.R.; Loretta, L.; Muñoz_Javier, A.; Parak,W.J. Nanoparticle-modified polyelectrolyte capsules. Nano Today 2008, 3, 12–21.
  70. Johnston, A.P.; Cortez, C.; Angelatos, A.S.; Caruso, F. Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci. 2006, 11, 203–209.
  71. Shagholani, H.; Ghorbani, M.; Nikpay, A.; Soltani, M. Chitosan nanocapsule-mounted cellulose nanofibrils as nanoships for smart drug delivery systems and treatment of avian trichomoniasis. J. Taiwan Inst. Chem. Eng. 2019, 95, 290–299.
  72. Elbaz, N.M.; Owen, A.; Rannard, S.; McDonald, T.O. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsivemulti-layered nanocapsules for oral drug delivery. Int. J. Pharm. 2019, 574.
  73. Menard, M.; Meyer, F.; Parkhomenko, K.; Leuvrey, C.; Francius, G.; Begin-Colin, S.; Mertz, D. Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 332–341.
  74. Shang, B.; Zhang, X.; Ji, R.;Wang, Y.; Hu, H.; Peng, B.; Deng, Z. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. Mater. Sci. Eng. C 2020, 106, 110174.
  75. Rata, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Bacaita, S.E.; Mihalache, C.; Daraba, O.M.; Gherghel, D.; Popa, M. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater. Sci. Eng. C 2019, 103, 109828.
  76. Dubey, V.; Mohan, P.; Dangi, J.S.; Kesavan, K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int. J. Biol. Macromol. 2019.
  77. Trindade, I.C.; Pound-Lana, G.; Pereira, D.G.S.; De Oliveira, L.A.M.; Andrade, M.S.; Vilela, J.M.C.; Postacchini, B.B.; Mosqueira, V.C.F. Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. Eur. J. Pharm. Sci. 2018, 124, 89–104.
  78. Pavan kumar Kothamasu,Hemanth kanumur,Niranjan ravur, Chiranjeevi maddu, Radhika parasuramrajam, Shivakumar Tangavel. ; Nanocapsule : The weapons for novel drug deliverysystem, 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648923/.
  79. Jayanta kumar patra, Gitishree Das, Han-Seung Shin; Nanobased drug delivery system: recent developments and future prospects., 2018. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0392-8.
  80. Mayer, department of chemistry, university of Duisburg, essen, Duisburg- Germany. 2005. https://www.researchgate.net/publication/7417147_Nanocapsules_as_Drug_Delivery_Systems.
  81. Manali pisal, Miss. Pranjal Barbade, Prof. Sayali Dudhal. : Nanocapsule ; Internationaljournal of pharmaceutical science,2020.
  82. R. Radhika*, Shashikanth, T. Shivakumar : Nanocapsule; A new approach in drug delivery.2011.https://ijpsr.com/bft-article/nanocapsules-a-new-approach-in-drug-delivery/
  83. Karthik, Anandaramakrishnan. C, Narayansinghchahwal :Nano encapsulation techniques for food bioactive components : A Review. 2012. https://link.springer.com/article/10.1007/s11947-012-0944-0
  84. Debaleena Das, Nivedita maity, Anuradha H. V. : Nano technology: a revolution in targated drug delivery.;2017. https://www.ijbcp.com/index.php/ijbcp/article/view/2127
  85. H, Lemraski EG, Webster TJ, Rafiee moghaddam R, Abdolkahu Y. : Nanotechnology: a revolution in targeted drug delivery. : 2017. https://www.dovepress.com/a-review-of-drug- delivery- systems-based-on-nanotechnology-and-green-ch-peer-reviewed-fulltext-article-IJN
  86. Gouri nilwar, P. B. Mute, P. P. Talhan, Shruti Takre. ; Nanocapsules : nano novel drug deliverysystem; 2017. https://www.pharmatutor.org/articles/nanocapsules-nano-novel-drug- delivery- system?amp
  87. Siyuan Deng, Maria Rosa Gigliobianco, Roberta censi and Piera Dimartino. : Polymeric nanocapsule as Nano technological alternative for drug delivery system : Current status,challenges and opportunities. ;2020. https://pubmed.ncbi.nlm.nih.gov/32354008/
  88. Dunne M, Corrigan OI and Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 21(16), 2000, 1659-68. PubMed
  89. Repka M. Hot Melt Extrusion. Encyclopedia of pharmaceutical technology, 2nd ed.; Swarbrick J, Boylan J (Ed.), Marcel Dekker Inc, New York, 2, 2002,PP. 1488-1504.
  90. Couvreur P, Barratt G, Fattal E, Legrand P and Vauthier C. Nanocapsule technology- A Review. Crit Rev Ther Drug Carrier Syst, 19(2), 2002, 99-134. PubMed
  91. Jang J, Bae J and Park E. Selective fabrication of poly (3, 4- ethylenedioxythiophene) nanocapsules and mesocellular foams using surfactant-mediated interfacial polymerization. Adv Mater, 18(3), 2006 ,354-58.
  92. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A and Couvreur .Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res, 17(6), 2000,707-14. PubMed
  93. Daniel TC, Polina BS and Kimberly AD. Investigating Lyophilization of Lipid Nanocapsules with Fluorescence Correlation Spectroscopy. Langmuir, 26(12), 2010, 10218-22.PMC free article PubMed
  94. Aiyer HN, Seshadri R, Raina G, Sen R and Rahul R. Study of Carbon Nanocapsules (Onions) and Spherulitic Graphite by Stm and Other Techniques. In: Fullerene Sci Tech, 3(6),1995, 765-777
  95. Watnasirichaikul S, Davies NM, Rades T and Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res, 17(6), 2000, 684-89. PubMed
  96. Sung OC, Eun JL, Hyeok ML, Yue L, Lan YH and Dong PK. Hierarchical pore structures fabricated by electron irradiation of silicone grease and their applications to superhydrophobic and superhydrophilic films. Macromol Rapid Commun, 28(3), 2007, 246-51.
  97. Douglas AW and Zeno WW. Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings, 36(3),1999, 148-72.
  98. Kepczynski M, Bednar J, Lewandowska J, Staszewska M and NowakowskaM . Hybrid silicasiliconenanocapsules obtained in catanionicvesicles .Cryo-TEM studies. J NanosciNanotechnol, 9(5), 2009,3138-43. PubMed
  99. Song Ma, Dianyu G, Weishan Z, Wei L, Xiuliang M and Zhidong Z. Synthesis of a new type of GdAl2 nanocapsule with a large cryogenic magnetocaloric effect and novel coral-like aggregates self-assembled by nanocapsules. Nanotechnology, 17(21), 2006,5406- 11.
  100. Pohlmann R, Beck RCR, Lionzo MIZ, Coasta TMH, Benvenutti EV, Re MI, et al. Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system. Braz J ChemEng, 25(2), 2008,389-98.
  101. Liu XG, Li B, Geng DY, Cui WB, Yang F, Xie ZG, et al. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon, 47(2), 2009,470-74.
  102. Kedersha NL. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol, 112(2), 1991 ,225- 35. PMC free article PubMed
  103. Leonard HR, Hal M, Bruce D, Jeffrey Z and James H. The Development of Vault Nano Capsules. NSF Nanoscale Science and Engineering Grantees Conference, 2003,1-3.
  104. Sangwoo P, Hong YC, Jeong YA, Yungwan K, Abiraman S, Jeffrey O, et al. Photo-Cross-Linkable Thermoresponsive Star Polymers Designed for Control of Cell- Surface Interactions. Biomacromolecules, 11(10), 2010,2647-52. PubMed
  105. Bouchemal K, Briançon S, Perrier E, Fessi H, Bonnet I and Zydowicz N. Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm, 269(1), 2004,89-100. PubMed
  106. Hildebrand GE and Tack JW. 2000. Microencapsulation of peptides and proteins. Int J Pharm, 196(2), 173–76.
  107. Damge C, Michel C, Aprahamian M, Couvreur P and Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J Control Release, 13(2-3), 233-239.
  108. Jack MR, Celine B, Laurence M, Herv H, Vronique M, Elisabeth C, et al. 2008. Physicochemical characteristics andpreliminary in vivo biological evaluation of nanocapsules loaded with siRNA targeting estrogen receptor alpha. Biomacromolecules, 9(10), 2881–90.
  109. Panagiotis V, Matthieu F, Antoine F and Constantinos M. MRI-Guided Nanorobotic Systems for Therapeutic and Diagnostic Applications. Annu Rev Biomed Eng, 13(1), 157-84.
  110. Betsy TK, Gretchen MU, Mark TR and Clifford JS. 2006. Targeted Nanocapsules for Liver Cell-Type Delivery of Plasmids in vivo. Mol Ther, 13, S415.
  111. Deutsch E, Libson K, Vanderheyden JL, Ketring AR and Maxon HR. 1986. The chemistry of rhenium and technetium as related to the use of isotopes of these elements in therapeutic and diagnostic nuclear medicine. Int J Rad Appl Instrum B, 13(4), 465–77.
  112. Dong XT, Zhang L, Zhang W, Wang LP and Hong GY. Preparation and Characterization of Nanometer-sized CeO2 /Polystyrene Hybrid Material. Acta Phys Chim Sin, 17(8), 739-42.
  113. Hwang SL and Kim JC. In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly (ε-caprolacton) nanocapsules. J Microencapsul. 25(5), 351-56.
  114. Sao K, Murata M, Umezaki K, Fujisaki Y, Mori T, Niidome T, et al. 2009. Molecular design of protein-based nanocapsules for stimulus-responsive characteristics. Bioorg Med Che, 17(1), 85-93.
  115. Marie Curie. Novel lipid nanocapsules of anti alpha 1 sodium pump subunit SiRNA to specifically target metastatic melanomas. European commission euraxess, 11, 37.
  116. Falqueiro M, Primo FL, Morais PC, Mosiniewicz S, Suchocki P and Tedesco AC. 2011. Selol-loaded magnetic nanocapsules: A new approach for hyperthermia cancer therapy. J Appl Phys, 109, 07B306.
  117. Michael Berger. Integrating nanotube-based NEMS into large scale MEMS. Nanowerk LLC, 5, 316-22. Available on: http://www.nanowerk.com/spotlight/spotid=11804.php
  118. Radhika PR, Sasikanth and Sivakumar T. 2011. Nanocapsules: A new approach for drug delivery. Int J Pharma Sci Res, 2(6), 1426-29.