International Journal of Drug Delivery Technology
Volume 15, Issue 1

Bridging Neurotransmitter Functions and Psychological Disorders: A Detailed Review

Meena Kausar1,2*, Kapil Kumar1, Rajeshwar Kamal Kant Arya2 

1Samrat Prithviraj Chauhan College of Pharmacy, Kashipur, Uttarakhand, India.

2Department of Pharmaceutical sciences, Bhimtal, Kumaun University, Uttarakhand, India.

Received: 9th Aug, 2024; Revised: 14th Jan, 2025; Accepted: 17th Feb, 2025; Available Online: 25th Mar, 2025 

ABSTRACT

Neuropharmacology, the branch of medical science, deals with the action of various pharmacological agents on the nervous system. Neurotransmitters are the endogenous chemical substances released from neurons, through which neurons are capable to communicate with each other through-out the body. There are numerous neurotransmitters are present in the body such as acetylcholine, noradrenalin, adrenaline, dopamine, serotonin, glutamate, GABA (γ-amino butyric acid), aspartate, glycine and histamine etc. These neurotransmitters are actively involved in almost all the physiological process in the body. Upregulation or downregulation of these neurotransmitters results in abnormal physiological or disease states. Therefore, a number of pharmacological agents are developed to regulate the level of neurotransmitters in brain and are employed to treat these neurological diseases or disorders.

Key words: Neurotransmitters, mood disorders, neurological disorders.

How to cite this article: Meena Kausar, Kapil Kumar, Rajeshwar Kamal Kant Arya. Bridging Neurotransmitter Functions and Psychological Disorders: A Detailed Review. International Journal of Drug Delivery Technology. 2025;15(1):342-50. doi: 10.25258/ijddt.15.1.47

REFERENCES

  1. Jocham G, Ullsperger M. Neuropharmacology of performance monitoring. Neurosci Biobehav Rev. 2009 Jan;33(1):48-60. doi: 10.1016/j.neubiorev.2008.08.011. Epub 2008 Aug 22. PMID: 18789964.
  2. Henderson BJ, Lester HA. Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology. 2015 Sep;96(Pt B):178-93. doi: 10.1016/j.neuropharm.2015.01.022. Epub 2015 Feb 4. PMID: 25660637; PMCID: PMC4486611.
  3. Rammsayer TH. Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B. 1999 Aug;52(3):273-86. doi: 10.1080/713932708. PMID: 10467900.
  4. Tallman JF. Neuropsychopharmacology at the new millennium: new industry directions. Neuropsychopharmacology. 1999 Feb;20(2):99-105. doi: 10.1016/S0893-133X(98)00104-3. PMID: 9885790.
  5. Bozarth MA, Pudiak CM, KuoLee R. Effect of chronic nicotine on brain stimulation reward. I. Effect of daily injections. Behav Brain Res. 1998 Nov;96(1-2):185-8. doi: 10.1016/s0166-4328(98)00050-3. PMID: 9821554.
  6. Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Res Brain Res Rev. 1995 Nov;21(3):285-300. doi: 10.1016/0165-0173(95)00016-x. PMID: 8806017.
  7. Callaway, E., Halliday, R., & Naylor, H. (1992). Cholinergic activity and constraints on information processing. Biological Psychology, 33(1), 1–22. https://doi.org/10.1016/0301-0511(92)90002-C
  8. Yamadori A, Yoshida T, Mori E, Yamashita H. Neurological basis of skill learning. Brain Res Cogn Brain Res. 1996 Dec;5(1-2):49-54. doi: 10.1016/s0926-6410(96)00040-7. PMID: 9049070.
  9. Michael D. Kopelman (1986) The cholinergic neurotransmitter system in human memory and dementia: A review, The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 38:4, 535-573, DOI: 10.1080/14640748608401614
  10. Dunne, M. P., & Hartley, L. R. (1985). The effects of scopolamine upon verbal memory: evidence for an attentional hypothesis. Acta Psychologica, 58(3), 205–217.doi:10.1016/0001-6918(85)90020-4
  11. Rammsayer TH. On dopaminergic modulation of temporal information processing. Biol Psychol. 1993 Sep;36(3):209-22. doi: 10.1016/0301-0511(93)90018-4. PMID: 8260566.
  12. Dayan L, Finberg JP. L-DOPA increases noradrenaline turnover in central and peripheral nervous systems. Neuropharmacology. 2003 Sep;45(4):524-33. doi: 10.1016/s0028-3908(03)00190-4. PMID: 12907313.
  13. Trantham-Davidson H, Neely LC, Lavin A, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci. 2004 Nov 24;24(47):10652-9. doi: 10.1523/JNEUROSCI.3179-04.2004. PMID: 15564581; PMCID: PMC5509068.
  14. Riba J, Rodríguez-Fornells A, Morte A, Münte TF, Barbanoj MJ. Noradrenergic stimulation enhances human action monitoring. J Neurosci. 2005 Apr 27;25(17):4370-4. doi: 10.1523/JNEUROSCI.4437-04.2005. PMID: 15858063; PMCID: PMC6725119.
  15. Mundorf ML, Joseph JD, Austin CM, Caron MG, Wightman RM. Catecholamine release and uptake in the mouse prefrontal cortex. J Neurochem. 2001 Oct;79(1):130-42. doi: 10.1046/j.1471-4159.2001.00554.x. PMID: 11595765.
  16. Moore RY, Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci. 1979;2:113-68. doi: 10.1146/annurev.ne.02.030179.000553. PMID: 231924.
  17. Laakso A, Pohjalainen T, Bergman J, Kajander J, Haaparanta M, Solin O, Syvälahti E, Hietala J. The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects. Pharmacogenet Genomics. 2005 Jun;15(6):387-91. doi: 10.1097/01213011-200506000-00003. PMID: 15900211.
  18. Czyrak, A., Czepiel, K., Maćkowiak, M., Chocyk, A., & Wędzony, K. (2003). Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Research, 989(1), 42–51.doi:10.1016/s0006-8993(03)03352-3
  19. Deng PY, Poudel SK, Rojanathammanee L, Porter JE, Lei S. Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex. Mol Pharmacol. 2007 Jul;72(1):208-18. doi: 10.1124/mol.107.034389. Epub 2007 Apr 23. PMID: 17452494.
  20. Gardier AM, Malagié I, Trillat AC, Jacquot C, Artigas F. Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol. 1996;10(1):16-27. doi: 10.1111/j.1472-8206.1996.tb00145.x. PMID: 8900496.
  21. Peroutka SJ, Synder SH. Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry. 1980 Dec;137(12):1518-22. doi: 10.1176/ajp.137.12.1518. PMID: 6108081.
  22. Vitiello B, Martin A, Hill J, Mack C, Molchan S, Martinez R, Murphy DL, Sunderland T. Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology. 1997 Jan;16(1):15-24. doi: 10.1016/S0893-133X(96)00134-0. PMID: 8981385.
  23. Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB. Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol. 2000 Jun;14(2):177-85. doi: 10.1177/026988110001400208. PMID: 10890313.
  24. Puig MV, Santana N, Celada P, Mengod G, Artigas F. In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex. 2004 Dec;14(12):1365-75. doi: 10.1093/cercor/bhh097. Epub 2004 May 27. PMID: 15166106.
  25. Ji H, Shepard PD. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci. 2007 Jun 27;27(26):6923-30. doi: 10.1523/JNEUROSCI.0958-07.2007. PMID: 17596440; PMCID: PMC6672239.
  26. Michels G, Moss SJ. GABAA receptors: properties and trafficking. Crit Rev Biochem Mol Biol. 2007 Jan-Feb;42(1):3-14. doi: 10.1080/10409230601146219. PMID: 17364682.
  27. Benatoui R, Bairi A, Tahraoui A. Modulatory effect of harmine on spatial memory, fertility via MAO inhibition, preventing anemia and anti-nociception upon footshock stress at three stages of pregnant rats. Universal Journal of Pharmaceutical Research 2021; 6(5):35-45. DOI: https://doi.org/10.22270/ujpr.v6i5.671
  28. Bozarth MA, Pudiak CM, KuoLee R. Effect of chronic nicotine on brain stimulation reward. I. Effect of daily injections. Behav Brain Res. 1998 Nov;96(1-2):185-8. doi: 10.1016/s0166-4328(98)00050-3. PMID: 9821554.
  29. Tsuang MT, Taylor L, Faraone SV. An overview of the genetics of psychotic mood disorders. J Psychiatr Res. 2004 Jan;38(1):3-15. doi: 10.1016/s0022-3956(03)00096-7. PMID: 14690766
  30. De Bruijn ER, Sabbe BG, Hulstijn W, Ruigt GS, Verkes RJ. Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res. 2006 Aug 11;1105(1):122-9. doi: 10.1016/j.brainres.2006.01.006. Epub 2006 Feb 24. PMID: 16499887.
  31. Gardier AM, Malagié I, Trillat AC, Jacquot C, Artigas F. Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol. 1996;10(1):16-27. doi: 10.1111/j.1472-8206.1996.tb00145.x. PMID: 8900496.
  32. Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB. Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol. 2000 Jun;14(2):177-85. doi: 10.1177/026988110001400208. PMID: 10890313.
  33. von Knorring AL, Cloninger CR, Bohman M, Sigvardsson S. An adoption study of depressive disorders and substance abuse. Arch Gen Psychiatry. 1983 Sep;40(9):943-50. doi: 10.1001/archpsyc.1983.01790080025003. PMID: 6615156.
  34. Sturt E, Kumakura N, Der G. How depressing life is--life-long morbidity risk for depressive disorder in the general population. J Affect Disord. 1984 Oct;7(2):109-22. doi: 10.1016/0165-0327(84)90029-6. PMID: 6238066.
  35. Torgersen S. Genetic factors in moderately severe and mild affective disorders. Arch Gen Psychiatry. 1986 Mar;43(3):222-6. doi: 10.1001/archpsyc.1986.01800030032003. PMID: 3954541.
  36. Oyeniran Taiwo O, Opeyemi A, Ejiogu DC. New era of medicine: role of nutraceuticals in treatment and prevention of various diseases. Universal Journal of Pharmaceutical Research. 2017, 2(5), 60-63.
  37. Maier F, Merkl J, Ellereit AL, Lewis CJ, Eggers C, Pedrosa DJ, Kalbe E, Kuhn J, Meyer TD, Zurowski M, Timmermann L. Hypomania and mania related to dopamine replacement therapy in Parkinson's disease. Parkinsonism Relat Disord. 2014 Apr;20(4):421-7. doi: 10.1016/j.parkreldis.2014.01.001. Epub 2014 Jan 12. PMID: 24467817.
  38. Gitlin MJ, Mintz J, Sokolski K, Hammen C, Altshuler LL. Subsyndromal depressive symptoms after symptomatic recovery from mania are associated with delayed functional recovery. J Clin Psychiatry. 2011 May;72(5):692-7. doi: 10.4088/JCP.09m05291gre. Epub 2010 Jun 29. PMID: 20673560.
  39. Brooks JO 3rd, Hoblyn JC. Secondary mania in older adults. Am J Psychiatry. 2005 Nov;162(11):2033-8. doi: 10.1176/appi.ajp.162.11.2033. PMID: 16263839.
  40. Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18(9):951-75. doi: 10.3727/096368909X471251. Epub 2009 May 13. PMID: 19523343.
  41. El-Zine MAY, Ali MAA, Al-Shamahy HA. Prevalence of cns tumors and histological recognition  in the operated patients: 10 years’ experience in Yemen. Universal Journal of Pharmaceutical Research 2021; 6(2):20-27. DOI: https://doi.org/10.22270/ujpr.v6i2.563
  42. Roze E, Coêlho-Braga MC, Gayraud D, Legrand AP, Trocello JM, Fénelon G, Cochen V, Patte N, Viallet F, Vidailhet M, Pollak P, Apartis E. Head tremor in Parkinson's disease. Mov Disord. 2006 Aug;21(8):1245-8. doi: 10.1002/mds.20918. PMID: 16673401.
  43. Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, Ziemssen T. Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease. Mov Disord. 2012 Apr 15;27(5):617-26. doi: 10.1002/mds.24996. PMID: 22508280.
  44. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord. 2001 Jul;16(4):622-30. doi: 10.1002/mds.1120. PMID: 11481685.
  45. Curran T, Lang AE. Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature, and pathophysiological hypotheses. Mov Disord. 1994 Sep;9(5):508-20. doi: 10.1002/mds.870090503. PMID: 7990846.
  46. Karimi I, Yakhchalian N, Fathi M, Miraghaee  Pharmacogenomic  considerations  for  prescribing  the antidepressant fluoxetine: A review in personalized medicine. Universal Journal of Pharmaceutical Research 2022; 7(3):74-80. DOI: https://doi.org/10.22270/ujpr.v7i3.779
  47. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. 2017 Jan 17;88(3):296-303. doi: 10.1212/WNL.0000000000003509. Epub 2016 Dec 16. Erratum in: Neurology. 2017 Aug 8;89(6):642. doi: 10.1212/WNL.0000000000004317. PMID: 27986877;
  48. Keezer MR, Bell GS, Neligan A, Novy J, Sander JW. Cause of death and predictors of mortality in a community-based cohort of people with epilepsy. Neurology. 2016 Feb 23;86(8):704-12. doi: 10.1212/WNL.0000000000002390. Epub 2016 Jan 15. PMID: 26773074.
  49. Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol. 2008 Mar;6(1):1-20. doi: 10.2174/157015908783769653. PMID: 19305785; PMCID: PMC2645547.
  50. Udogadi NS, Divine O, Edeaghe Integrating genomic discoveries into forensics: A mini review. Universal Journal of Pharmaceutical Research 2022; 7(1):50-54. DOI: https://doi.org/10.22270/ujpr.v7i2.750
  51. Chabal C, Jacobson L, Mariano A, Chaney E, Britell CW. The use of oral mexiletine for the treatment of pain after peripheral nerve injury. Anesthesiology. 1992 Apr;76(4):513-7. doi: 10.1097/00000542-199204000-00005. PMID: 1312797.
  52. Dahl JB, Kehlet H. Non-steroidal anti-inflammatory drugs: rationale for use in severe postoperative pain. Br J Anaesth. 1991 Jun;66(6):703-12. doi: 10.1093/bja/66.6.703. PMID: 2064886.