International Journal of Drug Delivery Technology
Volume 15, Issue 1

Applications of 3D Printing Techniques in Pharmaceutical Dosage Forms

Nuha Mohammed Abdulkhaleq1*, Mowafaq M. Ghareeb2, Zainab M. Abdulkhaleq3 

1Department of Pharmaceutics, College of Pharmacy, Al-Mustafa University, Baghdad, Iraq

2Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq

3Department of pharmaceutical chemistry, College of Pharmacy, Al-Mustafa University, Baghdad, Iraq 

Received: 24th Jan, 2025; Revised: 26th Feb, 2025; Accepted: 5th Mar, 2024; Available Online: 25th Mar, 2025 

ABSTRACT       

Three-dimensional (3D) printing has evolved exponentially since the first technology was introduced in the early 1980s. 3D printing technologies are classified into various manufacturing techniques, also called Additive manufacturing, where all are based over formulation of three-dimensional objects layer: by: layer process according to the digitally designed structure. The main types of 3D printing technologies that have been used within pharmaceutical and biomedical field is classifiable into three groups: printing based on inkjet (IJ) systems, nozzle-based deposition systems (NBD), and system based on laser (SBL). From ten year ago (2015) when the FDA has been approved the 1ist 3D printed tablet, Spritam, extensive research into the role of 3D-printing in the pharmaceutical industry of various dosage forms and bioengineering has gone. 3D-printing is considered a potential tool and a key driving factor for the manufacturing of specialized dosage forms, prostheses, and devices. The involvement of 3D-printing in pharmaceutical applications will allow the formulation of sophisticated and complex solid dosage forms via many doses and drug release, adjusted to the individual needs, in a more cost-effective way than the conventional manufacturing processes. This article reviews the main 3D-printing technologies used in the pharmaceutical field, with their advantages, disadvantages, and their application with various dosage forms.

Keywords: 3D-printing, dosage forms, personalized dosing, drug delivery.

How to cite this article: Nuha Mohammed Abdulkhaleq, Mowafaq M. Ghareeb, Zainab M. Abdulkhaleq. Applications of 3D Printing Techniques in Pharmaceutical Dosage Forms International Journal of Drug Delivery Technology. 2025;15(1):369-77. doi: 10.25258/ijddt.15.1.50

REFERENCES

  1. Jacob S, Nair AB, Patel V, Shah J. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech. 2020;21(6):1–16.
  2. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: Printing a dose of one’s own medicine. International Journal of Pharmaceutics. 2015;494(2):568–77. doi :10.1016/j.ijpharm.2014.12.006
  3. Pereira BC, Isreb A, Forbes RT, … Oga EF. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. European Journal of Pharmaceutics and Biopharmaceutics. 2019;135:94–103. doi :10.1016/j.ejpb.2018.12.009
  4. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. International Journal of Pharmaceutics. 2015;494(2):657–63. doi :10.1016/j.ijpharm.2015.04.069
  5. Giri BR, Song ES, Kwon J, … Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12(77):1–16.
  6. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges. Pharmaceutical Research. 2018;35(9).
  7. Saumya S, Agila Anbuselvan, Poorva S GP. A Review on 3D Printing Techniques and Scaffolds for Auricular Cartilage Reconstructionle. Research Journal of Pharmacy and Technology. 2018;11(9):4179–86.
  8. Konta AA, García-Piña M, Serrano DR. Personalised 3D printed medicines: Which techniques and polymers are more successful? Bioengineering. 2017;4(79):1–16.
  9. Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics. 2016;499(1–2):376–94.
  10. Hemanth KG, Hemamanjushree S, Abhinaya N, Raveendra Pai GPK. 3D Printing: A Review on Technology, Role in Novel Dosage Forms and Regulatory Perspective. Research Journal of Pharmacy and Technology. 2021;14(1):562–72.
  11. S. D. Mankar, Chaitrali Kale JK. 3D Printing Technology- A Computer Aided Design- A Review. Research Journal of Science and Technology. 2019;11(3):217–24.
  12. Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: An appealing route for customized drug delivery systems. International Journal of Pharmaceutics. 2020;588(119732):1–15. doi :10.1016/j.ijpharm.2020.119732
  13. Wallis M, Al-Dulimi Z, Tan DK, Maniruzzaman M, Nokhodchi A. 3D printing for enhanced drug delivery: current state-of-the-art and challenges. Drug Development and Industrial Pharmacy. 2020;46(9):1385–401. doi :10.1080/03639045.2020.1801714
  14. Pandey M, Choudhury H, Fern JLC, … Gorain B. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Delivery and Translational Research. 2020;10(4):986–1001.
  15. Joo Y, Shin I, Ham G, … Hwang SJ. The advent of a novel manufacturing technology in pharmaceutics: superiority of fused deposition modeling 3D printer. Journal of Pharmaceutical Investigation. 2020;50(2):131–45. doi :10.1007/s40005-019-00451-1
  16. Akiladevi D, Kumar Raman Suresh AN. A Review on 3D printing Pharmaceutical Manufacturing and applications on Drug Delivery System. Research Journal of Pharmacy and Technology. 2019;122(2):873–5.
  17. Tan DK, Maniruzzaman M, Nokhodchi A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics. 2018;10(203):1–23.
  18. Menditto E, Orlando V, De Rosa G, … Almeida IF. Patient centric pharmaceutical drug product design—the impact on medication adherence. Pharmaceutics. 2020;12(1):1–23.
  19. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discovery Today. 2018;23(8):1547–55. doi :10.1016/j.drudis.2018.05.025
  20. Maher RL, Hanlon J, Hajjar ER. Clinical consequences of polypharmacy in elderly. Expert Opinion on Drug Safety. 2014;13(1):57–65.
  21. Fanous M, Gold S, Hirsch S, Ogorka J, Imanidis G. Development of Immediate Release (IR) 3D-printed oral dosage forms with focus on industrial relevance. European Journal of Pharmaceutical Sciences. 2020;155(June):105558. doi :10.1016/j.ejps.2020.105558
  22. Wei C, Solanki NG, Vasoya JM, Shah A V., Serajuddin ATM. Development of 3D Printed Tablets by Fused Deposition Modeling Using Polyvinyl Alcohol as Polymeric Matrix for Rapid Drug Release. Journal of Pharmaceutical Sciences. 2020;109(4):1558–72. doi :10.1016/j.xphs.2020.01.015
  23. Goyanes A, Fina F, Martorana A, … Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. International Journal of Pharmaceutics. 2017;527(1–2):21–30. doi :10.1016/j.ijpharm.2017.05.021
  24. Kimura S ichiro, Ishikawa T, Iwao Y, Itai S, Kondo H. Fabrication of zero-order sustained-release floating tablets via fused depositing modeling 3D printer. Chemical and Pharmaceutical Bulletin. 2019;67(9):992–9.
  25. Jiaxiang Zhang, Weiwei Yang, Anh Q. Vo, Xin Feng, Xingyou Ye, Dong Wuk Kim MAR. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydrate Polymers. 2017;177:49–57. doi :10.1016/j.carbpol.2017.08.058
  26. Sandler N, Määttänen A, Ihalainen P, … Peltonen J. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. Journal of pharmaceutical sciences. 2011 Aug;100(8):3386–95.
  27. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Materials Today. 2014;17(5):247–52. doi :10.1016/j.mattod.2014.04.027
  28. Cader HK, Rance GA, Alexander MR, … Wildman RD. Water-based 3D inkjet printing of an oral pharmaceutical dosage form. International Journal of Pharmaceutics. 2019;564(April):359–68. doi :10.1016/j.ijpharm.2019.04.026
  29. Dimitrov D, Schreve K, De Beer N. Advances in three dimensional printing - State of the art and future perspectives. Rapid Prototyping Journal. 2006;12(3):136–47.
  30. Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Materials Science and Engineering C. 2014;38(1):1–10. doi :10.1016/j.msec.2014.01.027
  31. Chimate C, Koc B. Pressure assisted multi-syringe single nozzle deposition system for manufacturing of heterogeneous tissue scaffolds. International Journal of Advanced Manufacturing Technology. 2014;75(1–4):317–30.
  32. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews. 2017;108(1):39–50.
  33. Genina N, Holländer J, Jukarainen H, … Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. European Journal of Pharmaceutical Sciences. 2016;90:53–63. doi :10.1016/j.ejps.2015.11.005
  34. Melocchi A, Parietti F, Maroni A, … Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. International Journal of Pharmaceutics. 2016;509(1–2):255–63. doi :10.1016/j.ijpharm.2016.05.036
  35. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. International Journal of Pharmaceutics. 2014;476(1):88–92.
  36. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering. 2015;9(1):1–14.
  37. Han D, Lu Z, Chester SA, Lee H. Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography. Scientific Reports. 2018;8(1):1–10. doi :10.1038/s41598-018-20385-2
  38. Park BJ, Choi HJ, Moon SJ, … Han HK. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. Journal of Pharmaceutical Investigation. 2019;49(6):575–85. doi :10.1007/s40005-018-00414-y
  39. Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Annals - Manufacturing Technology. 2007;56(1):205–8.
  40. Madzarevic M, Medarevic D, Vulovic A, … Ibric S. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019;11(544):1–16.
  41. Brambilla CRM, Okafor‐muo OL, Hassanin H, Elshaer A. 3dp printing of oral solid formulations: A systematic review. Pharmaceutics. 2021;13(3):1–25.
  42. Goyanes A, Scarpa M, Kamlow M, … Orlu M. Patient acceptability of 3D printed medicines. International Journal of Pharmaceutics. 2017;530(1–2):71–8. doi :10.1016/j.ijpharm.2017.07.064
  43. Jamróz W, Kurek M, Łyszczarz E, … Jachowicz R. 3D printed orodispersible films with Aripiprazole. International Journal of Pharmaceutics. 2017;533(2):413–20. doi :10.1016/j.ijpharm.2017.05.052
  44. Arafat B, Wojsz M, Isreb A, … Alhnan MA. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. European Journal of Pharmaceutical Sciences. 2018;118:191–9.
  45. Shaik Naaz VKT. Hot-Melt Extrusion Technology in the Emerging Pharma Field. Research Journal of Pharmacy and Technology. 2018;11(4):1619–23.
  46. Kulkarni, Vinay Rao AKG. Solubility Enhancement of Lumefantrine by Hot Melt Extrusion Process. Research Journal of Pharmacy and Technology. 2019;12(6):2929–35.
  47. Ashay Manisha Shailendra kumar, Girish Pai Kulyadi, Srinivas Mutalik, Vijay Induvadan Kulkarni VKT. Application of Hot Melt Extrusion for the Solubility Enhancement of a BCS Class II Drug. Research Journal of Pharmacy and Technology. 2019;12(8):3751–4.
  48. Sofi N Stiani, Anas Subarnas TR. Anticalculi Activities of Apigenin Hot Melt Extrusion Results with Soluplus® and Kollidon® VA 64 Polymers on Wistar Rats. Research Journal of Pharmacy and Technology. 2021;14(6):2931–6.
  49. Aaisha N Sagri, Rukhsana A Rub, Anita S Kulkarni, Indrajeet Gonjari, Dhananjay S Saindane UIS. Dissolution Enhancement of Ezetimibe by Solid Dispersion. Asian Journal of Research in Chemistry. 2009;2(3):325–31.
  50. Rohan R. Vakhariya, S. M. Kumbhar, R. B. lade, P. S. Salunkhe RHU. Dissolution Rate Enhancement of Ramipril by Solid Dispersion Technique. Asian Journal of Pharmaceutical Research. 2020;10(1):08–12.
  51. Punitha S, Srinivasa Reddy G, Srikrishna T LKM. Solid Dispersions: A Review. Research Journal of Pharmacy and Technology. 2011;4(3):331–4.
  52. Macchi E, Zema L, Maroni A, Gazzaniga A, Felton LA. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding. European Journal of Pharmaceutical Sciences. 2015;70(January):1–11. doi :10.1016/j.ejps.2014.12.020
  53. Al. CJfVXGA et. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets.pdf. 2019. p. 55–62.
  54. Krkobabić M, Medarević D, Cvijić S, Grujić B, Ibrić S. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: Impact on internal structure and drug dissolution rate. International Journal of Pharmaceutics. 2019;572:118790. doi :10.1016/j.ijpharm.2019.118790
  55. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP)3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. European Journal of Pharmaceutical Sciences. 2019;135(May):60–7. doi :10.1016/j.ejps.2019.05.008
  56. Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. International Journal of Pharmaceutics. 2020;575:118883. doi :10.1016/j.ijpharm.2019.118883
  57. Ehtezazi T, Algellay M, Islam Y, … Sarker SD. The Application of 3D Printing in the Formulation of Multilayered Fast Dissolving Oral Films. Journal of Pharmaceutical Sciences. 2018;107(4):1076–85. doi :10.1016/j.xphs.2017.11.019
  58. Musazzi UM, Selmin F, Ortenzi MA, … Cilurzo F. Personalized orodispersible films by hot melt ram extrusion 3D printing. International Journal of Pharmaceutics. 2018;551(1–2):52–9. doi :10.1016/j.ijpharm.2018.09.013
  59. Vuddanda PR, Alomari M, Dodoo CC, … Gaisford S. Personalisation of warfarin therapy using thermal ink-jet printing. European Journal of Pharmaceutical Sciences. 2018;117(January):80–7.
  60. Okwuosa TC, Soares C, Gollwitzer V, … Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. European Journal of Pharmaceutical Sciences. 2018;118(2017):134–43. doi :10.1016/j.ejps.2018.03.010
  61. Smith DM, Kapoor Y, Klinzing GR, Procopio AT. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule. International Journal of Pharmaceutics. 2018;544(1):21–30. doi :10.1016/j.ijpharm.2018.03.056
  62. Li Q, Guan X, Cui M, … Pan W. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. International Journal of Pharmaceutics. 2018;535(1–2):325–32. doi :10.1016/j.ijpharm.2017.10.037
  63. Fu J, Yin H, Yu X, … Sheng F. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. International Journal of Pharmaceutics. 2018;549(1–2):370–9. doi :10.1016/j.ijpharm.2018.08.011
  64. Dumpa NR, Bandari S, Repka MA. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020;12(1):52.
  65. Charoenying T, Patrojanasophon P, Ngawhirunpat T, … Opanasopit P. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. Journal of Drug Delivery Science and Technology. 2020;55:101393. doi :10.1016/j.jddst.2019.101393
  66. Lamichhane S, Park JB, Sohn DH, Lee S. Customized novel design of 3D printed pregabalin tablets for intra-gastric floating and controlled release using fused deposition modeling. Pharmaceutics. 2019;11(11):1–14.
  67. Chen D, Xu XY, Li R, … Fan TY. Preparation and In vitro Evaluation of FDM 3D-Printed Ellipsoid-Shaped Gastric Floating Tablets with Low Infill Percentages. AAPS PharmSciTech. 2020;21(1):1–13.
  68. Charbe N, McCarron P, Lane M, Tambuwala M. Application of three-dimensional printing for colon targeted drug delivery systems. International Journal of Pharmaceutical Investigation. 2017;7(2):47.
  69. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. European Journal of Pharmaceutics and Biopharmaceutics. 2015;89(1):157–62. doi :10.1016/j.ejpb.2014.12.003
  70. Goyanes A, Chang H, Sedough D, … Basit AW. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. International Journal of Pharmaceutics. 2015;496(2):414–20. doi :10.1016/j.ijpharm.2015.10.039
  71. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. International Journal of Pharmaceutics. 2015;494(2):643–50. doi :10.1016/j.ijpharm.2015.07.067
  72. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. International Journal of Pharmaceutics. 2018;539(1–2):75–82. doi :10.1016/j.ijpharm.2018.01.036
  73. Nair A, Jacob S, Al-Dhubiab B, Attimarad M, Harsha S. Basic considerations in the dermatokinetics of topical formulations. Brazilian Journal of Pharmaceutical Sciences. 2013;49(3):423–34.
  74. Prausnitz MR. Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews. 2004;56(5):581–7.
  75. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends in Pharmacological Sciences. 2018;39(5):440–51.
  76. Ross S, Scoutaris N, Lamprou D, Mallinson D, Douroumis D. Inkjet printing of insulin microneedles for transdermal delivery. Drug Delivery and Translational Research. 2015;5(4):451–61.
  77. Boehm RD, Miller PR, Schell WA, Perfect JR, Narayan RJ. Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. Jom. 2013;65(4):525–33.
  78. Ali Z, Türeyen EB, Karpat Y, Çakmakci M. Fabrication of Polymer Micro Needles for Transdermal Drug Delivery System Using DLP Based Projection Stereo-lithography. Procedia CIRP. 2016;42:87–90.
  79. Kavaldzhiev M, Perez J, Ivanov Y, … Kosel J. Biocompatible 3D printed magnetic micro needles. Biomedical Physics & Engineering Express. 2017;3.
  80. Bracaglia LG, Messina M, Winston S, … Fisher JP. 3D Printed Pericardium Hydrogels to Promote Wound Healing in Vascular Applications. Biomacromolecules. 2017;18(11):3802–11.
  81. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release. 2016;234:41–8. doi :10.1016/j.jconrel.2016.05.034