Inhibition of Crystallization in Highly Loaded Drug Bilayer Topical Patch using Lipid-Based Cosolvent
Oktavia Eka Puspita*, Alya Tastbitha Elok Kamila, Oktavia Rahayu Adianingsih, Adeltrudis Adelsa Danimayostu
Departement of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
Received: 26th Sep, 2024; Revised and Accepted: 17th Jun, 2025; Available Online: 25th Jun, 2025
ABSTRACT
A topical patch with highly loaded drug may lead to instability by forming recrystallization and causing gritty and dry patch also has implications for the rate of drug absorption through the skin and patch adhesion strength. The idea of keeping the drug to be molecularly dispersed will prevent the drug from being recrystallized. In this research, the lipid-based cosolvent was used to dissolve the drug as well as to keep the drug molecularly dispersed. Sodium diclofenac was used in this research as a drug model to be loaded into the topical patch. The current study aimed to develop topical patch formula and to evaluate the effect of using lipid-based cosolvent in preventing recrystallization. The patch was prepared using solvent casting method. The evaluation of the effect of lipid-based cosolvents in preventing drug recrystallization was carried out using x-ray diffraction method. The result showed that the addition of lipid-based cosolvents to the highly loaded sodium diclofenac topical patch formulation was able to prevent crystallization after storage at room temperature for six days.
Keywords: topical patch, crystallization, lipid-based cosolvent, sodium diclofenac
How to cite this article: Oktavia Eka Puspita, Alya Tastbitha Elok Kamila, Oktavia Rahayu Adianingsih, Adeltrudis Adelsa Danimayostu. Inhibition of Crystallization in Highly Loaded Drug Bilayer Topical Patch using Lipid-Based Cosolvent. International Journal of Drug Delivery Technology. 2025;15(2):378-84. doi: 10.25258/ijddt.15.2.1
REFERENCES
- Mathews, L. M. (2016). Management of Pain Using Transdermal Patches. Asian Journal of Pharmaceutical and Clinical Research, 9(6), 32. https://doi.org/10.22159/ajpcr.2016.v9i6.13775
- Nalamachu, S., & Gudin, J. (2020). Characteristics of Analgesic Patch Formulations. Journal of Pain Research, 13, 2343–2354. https://doi.org/10.2147/JPR.S270169
- Tanner, T., & Marks, R. (2008). Delivering Drugs by the Transdermal Route: Review and Comment. Skin Research and Technology, 14(3), 249–260. https://doi.org/10.1111/j.1600-0846.2008.00316.x
- Jain, P., & Banga, A. K. (2010a). Inhibition of Crystallization in Drug-in-Adhesive-Type Transdermal Patches. International Journal of Pharmaceutics, 394(1–2), 68–74. https://doi.org/10.1016/j.ijpharm.2010.04.042
- Wong, W. F., Ang, K. P., Sethi, G., & Looi, C. Y. (2023). Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina (Kaunas, Lithuania), 59(4), 778. https://doi.org/10.3390/medicina59040778
- Taylor, L. S., Braun, D. E., & Steed, J. W. (2021). Crystals and Crystallization in Drug Delivery Design. Crystal Growth and Design, 21(3), 1375–1377. https://doi.org/10.1021/acs.cgd.0c01592
- Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V., & Sakhare, S. S. (2009). Co-crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients. Indian Journal of Pharmaceutical Sciences, 71(4), 359–370. https://doi.org/10.4103/0250-474X.57283
- Lei, Y., Yang, G., Du, F., Yi, J., Quan, L., Liu, H., Zhou, X., Gong, W., Han, J., Wang, Y., & Gao, C. (2022). Formulation and Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Colchicine. Pharmaceutics, 14(10), 2245. https://doi.org/10.3390/pharmaceutics14102245
- Sharma, P. K., Panda, A., Pradhan, A., Zhang, J., Thakkar, R., Whang, C.-H., Repka, M. A., & Murthy, S. N. (2018). Solid-State Stability Issues of Drugs in Transdermal Patch Formulations. AAPS PharmSciTech, 19(1), 27–35. https://doi.org/10.1208/s12249-017-0865-3
- Zhang, M., Liang, Z., Wu, F., Chen, J.-F., Xue, C., & Zhao, H. (2017). Crystal Engineering of Ibuprofen Compounds: From Molecule to Crystal Structure to Morphology Prediction by Computational Simulation and Experimental Study. Journal of Crystal Growth, 467, 47–53. https://doi.org/10.1016/j.jcrysgro.2017.03.014
- Adepu, S., & Ramakrishna, S. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
- Bird, D., & Ravindra, N. M. (2020). Transdermal Drug Delivery and Patches—An Overview. Medical Devices and Sensors, 3(6). https://doi.org/10.1002/mds3.10069
- Liu, B., Theil, F., Lehmkemper, K., Gessner, D., Li, Y., & Lishaut van, H. (2021). Crystallization Risk Assessment of Amorphous Solid Dispersions by Physical Shelf-Life Modeling: A Practical Approach. Molecular Pharmaceutics, 18(6), 2428–2437. https://doi.org/10.1021/acs.molpharmaceut.1c00270
- Braga, D., Casali, L., & Grepioni, F. (2022). The Relevance of Crystal Forms in the Pharmaceutical Field: Sword of Damocles or Innovation Tools? International Journal of Molecular Sciences, 23(16), 9013. https://doi.org/10.3390/ijms23169013
- Yang, M., Gong, W., Wang, Y., Shan, L., Li, Y., & Gao, C. (2016). Bioavailability Improvement Strategies for Poorly Water-Soluble Drugs Based on the Supersaturation Mechanism: An Update. Journal of Pharmacy and Pharmaceutical Sciences, 19(2), 208–225. https://doi.org/10.18433/J3W904
- Huang, D., Sun, M., Bu, Y., Luo, F., Lin, C., Lin, Z., Weng, Z., Yang, F., & Wu, D. (2019). Microcapsule-Embedded Hydrogel Patches for Ultrasound Responsive and Enhanced Transdermal Delivery of Diclofenac Sodium. Journal of Materials Chemistry. B, 7(14), 2330–2337. https://doi.org/10.1039/C8TB02928H
- Suksaeree, J., Siripornpinyo, P., & Chaiprasit, S. (2017). Formulation, Characterization, and In Vitro Evaluation of Transdermal Patches for Inhibiting Crystallization of Mefenamic Acid. Journal of Drug Delivery, 2017, 7358042. https://doi.org/10.1155/2017/7358042
- Zhang, X., Xing, H., Zhao, Y., & Ma, Z. (2018). Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics, 10(3), 74. https://doi.org/10.3390/pharmaceutics10030074
- Pund, S., Mahajan, N., Gangane, P., & Warokar, A. (2021). Enhancement of Solubility of Diclofenac Sodium by Pastillation Method. Journal of Drug Delivery and Therapeutics, 11(2), 6–10. https://doi.org/10.22270/jddt.v11i2.4756
- Chatterjee, B., Reddy, A., Santra, M., & Khamanga, S. (2022). Amorphization of Drugs for Transdermal Delivery-A Recent Update. Pharmaceutics, 14(5), 983. https://doi.org/10.3390/pharmaceutics14050983
- Tahir, M. A., Ali, M. E., & Lamprecht, A. (2020). Nanoparticle Formulations as Recrystallization Inhibitors in Transdermal Patches. International Journal of Pharmaceutics, 575, 118886. https://doi.org/10.1016/j.ijpharm.2019.118886
- Souza, J. B., Souza, J., Castro, L. M. L., Siqueira, M. F., Savedra, R. M. L., & Silva-Barcellos, N. M. (2019). Evaluation of the Losartan Solubility in the Biowaiver Context by Shake-Flask Method and Intrinsic Dissolution. Pharmaceutical Development and Technology, 24(3), 283–292. https://doi.org/10.1080/10837450.2018.1472610
- Vora, D., Dandekar, A., Bhattaccharjee, S., Singh, O. N., Agrahari, V., Peet, M. M., Doncel, G. F., & Banga, A. K. (2022). Formulation Development for Transdermal Delivery of Raloxifene, a Chemoprophylactic Agent against Breast Cancer. Pharmaceutics, 14(3), 680. https://doi.org/10.3390/pharmaceutics14030680
- Latif, M. S., Nawaz, A., Rashid, S. A., Akhlaq, M., Iqbal, A., Khan, M. J., Khan, M. S., Lim, V., & Alfatama, M. (2022). Formulation of Polymers-Based Methotrexate Patches and Investigation of the Effect of Various Penetration Enhancers: In Vitro, Ex Vivo and In Vivo Characterization. Polymers, 14(11), 2211. https://doi.org/10.3390/polym14112211
- Minghetti, P., Cilurzo, F., & Montanari, L. (1999). Evaluation of Adhesive Properties of Patches Based on Acrylic Matrices. Drug Development and Industrial Pharmacy, 25(1), 1–6. https://doi.org/10.1081/DDC-100102135
- Žilnik, L. F., Jazbinšek, A., Hvala, A., Vrečer, F., & Klamt, A. (2007). Solubility of Sodium Diclofenac in Different Solvents. Fluid Phase Equilibria, 261(1–2), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020
- He, Q., & Zhao, H. (2021). Imidacloprid (I) in Several Aqueous Co-Solvent Mixtures: Solubility, Solvent Effect, Solvation Thermodynamics and Enthalpy–Entropy Compensation. Journal of Molecular Liquids, 338, 116781. https://doi.org/10.1016/j.molliq.2021.116781
- Sa’adon, S., Ansari, M. N. M., Razak, S. I. A., Anand, J. S., Nayan, N. H. M., Ismail, A. E., Khan, M. U. A., & Haider, A. (2021). Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers, 13(15), 2459. https://doi.org/10.3390/polym13152459