International Journal of Drug Delivery Technology
Volume 15, Issue 2

Inhibition of Crystallization in Highly Loaded Drug Bilayer Topical Patch using Lipid-Based Cosolvent 

Oktavia Eka Puspita*, Alya Tastbitha Elok Kamila, Oktavia Rahayu Adianingsih, Adeltrudis Adelsa Danimayostu 

Departement of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia

Received: 26th Sep, 2024; Revised and Accepted: 17th Jun, 2025; Available Online: 25th Jun, 2025

ABSTRACT

A topical patch with highly loaded drug may lead to instability by forming recrystallization and causing gritty and dry patch also has implications for the rate of drug absorption through the skin and patch adhesion strength. The idea of keeping the drug to be molecularly dispersed will prevent the drug from being recrystallized. In this research, the lipid-based cosolvent was used to dissolve the drug as well as to keep the drug molecularly dispersed. Sodium diclofenac was used in this research as a drug model to be loaded into the topical patch. The current study aimed to develop topical patch formula and to evaluate the effect of using lipid-based cosolvent in preventing recrystallization. The patch was prepared using solvent casting method. The evaluation of the effect of lipid-based cosolvents in preventing drug recrystallization was carried out using x-ray diffraction method. The result showed that the addition of lipid-based cosolvents to the highly loaded sodium diclofenac topical patch formulation was able to prevent crystallization after storage at room temperature for six days.

Keywords: topical patch, crystallization, lipid-based cosolvent, sodium diclofenac

How to cite this article: Oktavia Eka Puspita, Alya Tastbitha Elok Kamila, Oktavia Rahayu Adianingsih, Adeltrudis Adelsa Danimayostu. Inhibition of Crystallization in Highly Loaded Drug Bilayer Topical Patch using Lipid-Based Cosolvent. International Journal of Drug Delivery Technology. 2025;15(2):378-84. doi: 10.25258/ijddt.15.2.1

REFERENCES

  1. Mathews, L. M. (2016). Management of Pain Using Transdermal Patches. Asian Journal of Pharmaceutical and Clinical Research, 9(6), 32. https://doi.org/10.22159/ajpcr.2016.v9i6.13775
  2. Nalamachu, S., & Gudin, J. (2020). Characteristics of Analgesic Patch Formulations. Journal of Pain Research, 13, 2343–2354. https://doi.org/10.2147/JPR.S270169
  3. Tanner, T., & Marks, R. (2008). Delivering Drugs by the Transdermal Route: Review and Comment. Skin Research and Technology, 14(3), 249–260. https://doi.org/10.1111/j.1600-0846.2008.00316.x
  4. Jain, P., & Banga, A. K. (2010a). Inhibition of Crystallization in Drug-in-Adhesive-Type Transdermal Patches. International Journal of Pharmaceutics, 394(1–2), 68–74. https://doi.org/10.1016/j.ijpharm.2010.04.042
  5. Wong, W. F., Ang, K. P., Sethi, G., & Looi, C. Y. (2023). Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina (Kaunas, Lithuania), 59(4), 778. https://doi.org/10.3390/medicina59040778
  6. Taylor, L. S., Braun, D. E., & Steed, J. W. (2021). Crystals and Crystallization in Drug Delivery Design. Crystal Growth and Design, 21(3), 1375–1377. https://doi.org/10.1021/acs.cgd.0c01592
  7. Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V., & Sakhare, S. S. (2009). Co-crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients. Indian Journal of Pharmaceutical Sciences, 71(4), 359–370. https://doi.org/10.4103/0250-474X.57283
  8. Lei, Y., Yang, G., Du, F., Yi, J., Quan, L., Liu, H., Zhou, X., Gong, W., Han, J., Wang, Y., & Gao, C. (2022). Formulation and Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Colchicine. Pharmaceutics, 14(10), 2245. https://doi.org/10.3390/pharmaceutics14102245
  9. Sharma, P. K., Panda, A., Pradhan, A., Zhang, J., Thakkar, R., Whang, C.-H., Repka, M. A., & Murthy, S. N. (2018). Solid-State Stability Issues of Drugs in Transdermal Patch Formulations. AAPS PharmSciTech, 19(1), 27–35. https://doi.org/10.1208/s12249-017-0865-3
  10. Zhang, M., Liang, Z., Wu, F., Chen, J.-F., Xue, C., & Zhao, H. (2017). Crystal Engineering of Ibuprofen Compounds: From Molecule to Crystal Structure to Morphology Prediction by Computational Simulation and Experimental Study. Journal of Crystal Growth, 467, 47–53. https://doi.org/10.1016/j.jcrysgro.2017.03.014
  11. Adepu, S., & Ramakrishna, S. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
  12. Bird, D., & Ravindra, N. M. (2020). Transdermal Drug Delivery and Patches—An Overview. Medical Devices and Sensors, 3(6). https://doi.org/10.1002/mds3.10069
  13. Liu, B., Theil, F., Lehmkemper, K., Gessner, D., Li, Y., & Lishaut van, H. (2021). Crystallization Risk Assessment of Amorphous Solid Dispersions by Physical Shelf-Life Modeling: A Practical Approach. Molecular Pharmaceutics, 18(6), 2428–2437. https://doi.org/10.1021/acs.molpharmaceut.1c00270
  14. Braga, D., Casali, L., & Grepioni, F. (2022). The Relevance of Crystal Forms in the Pharmaceutical Field: Sword of Damocles or Innovation Tools? International Journal of Molecular Sciences, 23(16), 9013. https://doi.org/10.3390/ijms23169013
  15. Yang, M., Gong, W., Wang, Y., Shan, L., Li, Y., & Gao, C. (2016). Bioavailability Improvement Strategies for Poorly Water-Soluble Drugs Based on the Supersaturation Mechanism: An Update. Journal of Pharmacy and Pharmaceutical Sciences, 19(2), 208–225. https://doi.org/10.18433/J3W904
  16. Huang, D., Sun, M., Bu, Y., Luo, F., Lin, C., Lin, Z., Weng, Z., Yang, F., & Wu, D. (2019). Microcapsule-Embedded Hydrogel Patches for Ultrasound Responsive and Enhanced Transdermal Delivery of Diclofenac Sodium. Journal of Materials Chemistry. B, 7(14), 2330–2337. https://doi.org/10.1039/C8TB02928H
  17. Suksaeree, J., Siripornpinyo, P., & Chaiprasit, S. (2017). Formulation, Characterization, and In Vitro Evaluation of Transdermal Patches for Inhibiting Crystallization of Mefenamic Acid. Journal of Drug Delivery, 2017, 7358042. https://doi.org/10.1155/2017/7358042
  18. Zhang, X., Xing, H., Zhao, Y., & Ma, Z. (2018). Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics, 10(3), 74. https://doi.org/10.3390/pharmaceutics10030074
  19. Pund, S., Mahajan, N., Gangane, P., & Warokar, A. (2021). Enhancement of Solubility of Diclofenac Sodium by Pastillation Method. Journal of Drug Delivery and Therapeutics, 11(2), 6–10. https://doi.org/10.22270/jddt.v11i2.4756
  20. Chatterjee, B., Reddy, A., Santra, M., & Khamanga, S. (2022). Amorphization of Drugs for Transdermal Delivery-A Recent Update. Pharmaceutics, 14(5), 983. https://doi.org/10.3390/pharmaceutics14050983
  21. Tahir, M. A., Ali, M. E., & Lamprecht, A. (2020). Nanoparticle Formulations as Recrystallization Inhibitors in Transdermal Patches. International Journal of Pharmaceutics, 575, 118886. https://doi.org/10.1016/j.ijpharm.2019.118886
  22. Souza, J. B., Souza, J., Castro, L. M. L., Siqueira, M. F., Savedra, R. M. L., & Silva-Barcellos, N. M. (2019). Evaluation of the Losartan Solubility in the Biowaiver Context by Shake-Flask Method and Intrinsic Dissolution. Pharmaceutical Development and Technology, 24(3), 283–292. https://doi.org/10.1080/10837450.2018.1472610
  23. Vora, D., Dandekar, A., Bhattaccharjee, S., Singh, O. N., Agrahari, V., Peet, M. M., Doncel, G. F., & Banga, A. K. (2022). Formulation Development for Transdermal Delivery of Raloxifene, a Chemoprophylactic Agent against Breast Cancer. Pharmaceutics, 14(3), 680. https://doi.org/10.3390/pharmaceutics14030680
  24. Latif, M. S., Nawaz, A., Rashid, S. A., Akhlaq, M., Iqbal, A., Khan, M. J., Khan, M. S., Lim, V., & Alfatama, M. (2022). Formulation of Polymers-Based Methotrexate Patches and Investigation of the Effect of Various Penetration Enhancers: In Vitro, Ex Vivo and In Vivo Characterization. Polymers, 14(11), 2211. https://doi.org/10.3390/polym14112211
  25. Minghetti, P., Cilurzo, F., & Montanari, L. (1999). Evaluation of Adhesive Properties of Patches Based on Acrylic Matrices. Drug Development and Industrial Pharmacy, 25(1), 1–6. https://doi.org/10.1081/DDC-100102135
  26. Žilnik, L. F., Jazbinšek, A., Hvala, A., Vrečer, F., & Klamt, A. (2007). Solubility of Sodium Diclofenac in Different Solvents. Fluid Phase Equilibria, 261(1–2), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020
  27. He, Q., & Zhao, H. (2021). Imidacloprid (I) in Several Aqueous Co-Solvent Mixtures: Solubility, Solvent Effect, Solvation Thermodynamics and Enthalpy–Entropy Compensation. Journal of Molecular Liquids, 338, 116781. https://doi.org/10.1016/j.molliq.2021.116781
  28. Sa’adon, S., Ansari, M. N. M., Razak, S. I. A., Anand, J. S., Nayan, N. H. M., Ismail, A. E., Khan, M. U. A., & Haider, A. (2021). Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers, 13(15), 2459. https://doi.org/10.3390/polym13152459