International Journal of Drug Delivery Technology
Volume 15, Issue 2

Formulation and Evaluation of Fexofenadine hydrochloride-Nutraceutical Cocrystal to Improve Bioavailability through Inhibition of P-Glycoprotein Mediated Drug Efflux

Arpana Patil1, Shubham Biradar1, Nitin Khandagale1, Vishal Zambre2

1Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Kondhwa, (Bk), Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India

2Department of Pharmaceutical Chemistry, Smt. Kashibai Navale College of Pharmacy, Kondhwa, (Bk), Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India

Received: 23rd Feb, 2025; Revised: 11th May, 2025; Accepted: 28th May, 2025; Available Online: 25th Jun, 2025 

ABSTRACT

Background: Pharmaceutical co-crystallization is recommended as novel approach to improve bioavailability of BCS class-III drugs. Fexofenadine HCl (FEX) is an antiallergic, exhibits low oral bioavailability (33%). FEX being a substrate of p-gp drug efflux transporter which is accountable for its poor bioavailability. Drug-Nutraceuticals co-crystallization is projected as a rationale approach to improve the permeability of FEX. Coformers having ability to inhibit p-gp were screened by molecular docking approach. Additionally, the coformers were also looked up for the nutritional value they offer. Co-crystals of FEX with Piperine (FEX-PIP) and Curcumin (FEX–CUR) were effectively developed by NG &LAG method. Molecular docking studies revealed the possibility of one hydrogen bond with -4.5 Kcal/mol binding affinity of FEX with Curcumin. FEX–CUR (1:1) cocrystals characterized by SEM, FTIR, DSC &P-XRD. Cocrystal contained O-H-O hydrogen bond amid oxygen atom of secondary -OH of FEX and hydrogen atom of para-hydroxy group on aromatic ring of CUR. The permeability of newly formed cocrystals evaluated by everted gut sac method displayed a 2.68-fold increase in permeability as matched to drug and 2.62-fold increase in dissolution profile. Results indicated usefulness of cocrystallization method to expand permeability of FEX using nutraceuticals as coformers.

Keywords: Fexofenadine HCl, Nutraceuticals, Cocrystal, Everted gut sac, p-gp efflux transporter, Molecular docking

How to cite this article: Arpana Patil, Shubham Biradar, Nitin Khandagale, Vishal Zambre. Formulation and Evaluation of Fexofenadine hydrochloride-Nutraceutical Cocrystal to Improve Bioavailability through Inhibition of P-Glycoprotein Mediated Drug Efflux. International Journal of Drug Delivery Technology. 2025;15(2):804-11. doi: 10.25258/ijddt.15.2.56

REFERENCES

  1. Thakuria R, Sarma B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: A crystal engineering approach. Crystals 2018;8(2):101. [DOI: 10.3390/cryst8020101]
  2. Agarwal S, Mehrotra R. An overview of molecular docking. JSM Chem 2016;4(2):1024.
  3. Sopyan I, Fudholi A, Muchtaridi M, Sari IP. Simvastatin-nicotinamide co-crystal: Design, preparation and preliminary characterization. Trop J Pharm Res 2017;16(2):297–303. [DOI: 4314/tjpr.v16i2.6]
  4. Krishna GR, Shi L, Bag PP, Sun CC, Reddy CM. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers. Cryst Growth Des 2015;15(4):1827–1832. [DOI:1021/cg5018642]
  5. Wang X, Du S, Zhang R, Jia X, Yang T, Zhang X. Drug-drug cocrystals: Opportunities and challenges. Asian J Pharm Sci 2021;16(3):307–317. [DOI: 1016/j.ajps.2020.06.004]
  6. Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des 2018;18(10):6370–6387; [DOI: 10.1021/acs.cgd.8b00933]
  7. https://pubchem.ncbi.nlm.nih.gov (Accessed 26 July 26 2023).
  8. Yadav BK, Khursheed A, Singh RD. Cocrystals: A complete review on conventional and novel methods of its formation and its evaluation. Asian J Pharm Clin Res 2019;12(7):68–74. [DOI: 10.22159/ajpcr.2019.v12i7.33648]
  9. Walsh D, Serrano DR, Worku ZA, Norris BA, Healy AM. Production of cocrystals in an excipient matrix by spray drying. Int J Pharm2018;536(1):467–477. [DOI: 10.1016/j.ijpharm.2017.12.020]
  10. Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Comm 2016;52(54):8342–8360. [DOI: 10.1039/c6cc02943d]
  11. Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. Int J Pharm 2012;422(1–2):160–169. [DOI: 10.1016/j.ijpharm.2011.10.046]
  12. Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: Limitations and applications. J Pharm Pharmacol 2012;64(3):326-336. [DOI: 10.1111/j.2042-7158.2011.01391.x]
  13. Barthe L, Woodley JF, Kenworthy S, Houin G. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Meta Pharmacokinet 1998;23(2):313-323. [DOI: 10.1007/BF03189357]
  14. Barthe L, Bessouet M, Woodley JF, Houin G. The improved everted gut sac: A simple method to study intestinal P-glycoprotein. Int J Pharm 1998;173(1–2):255-258. [DOI: 10.1016/S0378-5173(98)00225-7]
  15. Fukte SR, Wagh MP, Rawat S. Coformer selection: An important tool in cocrystal formation. Int J Pharm Pharm Sci 2014;6(7):9-14.
  16. Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: A game changing approach for the administration of old drugs in new crystalline form. Drug Dev Ind Pharm 2020;46(10):1559-1568. [DOI: 10.1080/03639045.2020.1810270]
  17. Khalaji M, Potrzebowski MJ, Dudek MK. Virtual cocrystal screening methods as tools to understand the formation of pharmaceutical cocrystals—a case study of linezolid, a wide-range antibacterial drug. Cryst Growth Des 2021;21(4):2301–2314. [DOI: 10.1021/acs.cgd.0c01707]
  18. Surov AO, Ramazanova AG, Voronin AP, Drozd KV, Churakov AV, Perlovich GL. Virtual screening, structural analysis, and formation thermodynamics of carbamazepine cocrystals. Pharmaceutics 2023;15(3):836. [DOI: 10.3390/pharmaceutics15030836]
  19. Cruz-Cabeza AJ. Acid-base crystalline complexes and the pKa rule. CrystEngComm 2012;14(20):6362–6365. [DOI: 10.1039/C2CE26055G]
  20. Chow SF, Chen M, Shi L, Chow AHL, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res 2012;29(7):1854–1865. [DOI: 10.1007/s11095-012-0709-5]
  21. Wang LY, Zhao MY, Bu FZ, Niu YY, Yu YM, Li YT, Yan CW, Wu ZY. Cocrystallization of amantadine hydrochloride with resveratrol: The first drug-nutraceutical cocrystal displaying synergistic antiviral activity. Cryst Growth Des2021;21(5):2763–2776. [DOI: 10.1021/acs.cgd.0c01673]
  22. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021;11(8):2537-2564. [DOI: 10.1016/j.apsb.2021.03.030]
  23. Hasa D, Rauber GS, Voinovich D, Jones W. Cocrystal formation through mechanochemistry: From neat and liquid-assisted grinding to polymer-assisted grinding. Angew Chem Int Ed Engl 2015;54(4):7371-7375. [DOI: 10.1002/anie.201501638]

  1. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci 2012;101(7):2271–2280). [DOI: 10.1002/jps.23146]
  2. Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Comm (Camb) 2004;(17):1889–1896. [DOI: 10.1039/b402150a]
  3. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018;10(1):18. [DOI: 10.3390/pharmaceutics10010018]
  4. Panzade P, Shendarkar G. Design and preparation of zaltoprofen-nicotinamide pharmaceutical cocrystals via liquid assisted grinding method. Ind J Pharm Educ Res 2019;53(4s):s563–s570. [DOI: 10.5530/ijper.53.4s.151]
  5. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Deli Rev 2001;48(1):3-26. [DOI: 10.1016/s0169-409x(01)00097-7]
  6. Korotkova EI, Kratochvíl B. Pharmaceutical cocrystals. Procedia Chemistry 2014;10:473–476. [DOI: 10.1016/j.proche.2014.10.079]
  7. Regulatory classification of pharmaceutical co-crystals. February 2018. https://www.fda.gov/files/drugs/published/Regulatory-Classification-of-Pharmaceutical-Co-Crystals.pdf. [Accessed 26 July 2023]
  8. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, et al. Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des 2012;12(5):2147–2152. [DOI: 10.1021/cg3002948]
  9. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Crys Growth Des 2009;9(6):2950–2967. [DOI: 10.1021/cg900129f]
  10. M9 Biopharmaceutics classification system-based biowaivers FDA - Guidance for industry. May 2021. https://www.fda.gov/media/148472/download. [Accessed on January 24, 2024].
  11. Metry M, Polli JE. Evaluation of excipient risk in BCS Class I and III Biowaivers. AAPS J 2022;24(1):20. [DOI: 10.1208/s12248-021-00670-1]
  12. Parr A, Hidalgo IJ, Bode C, Brown W, Yazdanian M, et al. The effect of excipients on the permeability of BCS class III compounds and implications for biowaivers. Pharm Res 2016;33(1):167-176. [DOI: 10.1007/s11095-015-1773-4]
  13. Kuminek G, Cao F, Bahia de Oliveira da Rocha A, Gonçalves Cardoso S, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev 2016;101:143-166. [DOI: 10.1016/j.addr.2016.04.022]