Phytonanoformulations as New Frontier in Effective Management of Diabetes Mellitus Type 2
Nagineni Sudarshan Rao1, P Balaji2*
1School of Pharmaceutical Sciences, VISTAS, Pallavaram, Chennai, Tamil Nadu-600117, India
2Department of Pharmacology, School of Pharmaceutical Sciences, VISTAS, Pallavaram, Chennai, Tamil Nadu-600117, India
Received: 22nd Oct, 2024; Revised: 16th Mar, 2025; Accepted: 17th Apr, 2025; Available Online: 25th Jun, 2025
ABSTRACT
The chronic metabolic disease known as type 2 diabetes mellitus (T2DM) is typified by β-cell dysfunction, insulin resistance, and poor glucose metabolism. Despite the availability of pharmacological treatments, many patients experience inadequate glycemic control and adverse side effects. Recent developments in nanomedicine, especially the application of phytonanoparticles (PNPs), have demonstrated potential as a cutting-edge strategy for the treatment of type 2 diabetes. Phytonanoparticles are plant-based nanoparticles with special qualities like low toxicity, biocompatibility, and antioxidant activity that make them excellent options for treating diabetes. Phytonanoparticles exhibit several mechanisms of action that can address key aspects of T2DM. Their antioxidant and anti-inflammatory qualities aid in lowering oxidative stress, which is a major contributor to the etiology of type 2 diabetes. Additionally, PNPs may promote β-cell function, control glucose homeostasis, and improve insulin sensitivity. Additionally, phytonanoparticles can facilitate the targeted delivery of therapeutic agents, minimizing side effects and improving drug bioavailability. This review explores the synthesis, characterization, and therapeutic potential of phytonanoparticles in T2DM treatment. Various plant sources, such as Curcuma longa (turmeric), Azadirachta indica (neem), and Allium sativum (garlic), have been explored for their ability to produce nanoparticles with anti-diabetic properties. Furthermore, we discuss the mechanisms through which PNPs exert their beneficial effects, including modulation of inflammatory pathways, enhancement of insulin signaling, and reduction of hyperglycemia. Although research on PNPs in T2DM is still in its early stages, the results to date suggest that they hold significant potential as adjuncts to conventional treatments, offering a safer, more effective therapeutic option for managing T2DM. Phytonanoparticles represent a promising frontier in diabetes therapy, combining the power of plant-based compounds with nanotechnology to offer a multi-targeted approach to combat Type 2 diabetes mellitus.
Keywords: Diabetes type 2, natural products, phytochemicals, nanotechnology, bioavailability, and drug delivery.
How to cite this article: Nagineni Sudarshan Rao, P Balaji. Phytonanoformulations as New Frontier in Effective Management of Diabetes Mellitus Type 2. International Journal of Drug Delivery Technology. 2025;15(2):884-88. doi: 10.25258/ijddt.15.2.65
REFERENCES
- Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; et al. Nanotechnologybasedapproachesforanti-diabeticdrugsdelivery. Diabetes Res. Clin. Pract. [PubMed] 2018, 136, 52–77. [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. [PubMed] 2018, 16, 71. [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenolsandtheireffectsondiabetesmanagement:Areview. Med. J.Islam.Repub.Iran 2017, 31, 134.[CrossRef]
- Brglez Mojzer, E.; Knez Hrnˇciˇc, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extractionmethods,antioxidativeaction,bioavailabilityandanticarcinogeniceffects.Molecules2016,21,901.[CrossRef] [PubMed]
- Khurana, R.K.; Gaspar, B.L.; Welsby, G.; Katare, O.P.; Singh, K.K.; Singh, B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv. Transl. Res. 2018, 8, 617–632. [CrossRef]
- Sharma, M.; Sharma, R.; Jain, D.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water-soluble antihypertensive drugs. Scientifica 2016, 2016, 8525679. [CrossRef]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [CrossRef]
- Li, Y.; Zhang, J.; Gu, J.; Chen, S.; Wang, C.; Jia, W. Biosynthesisof polyphenol-stabilised nanoparticles and assessment of anti-diabetic activity. J. Photochem. Photobiol. B 2017, 169, 96–100. [CrossRef]
- Bhattacharjee, N.; Dua, T.K.; Khanra, R.; Joardar, S.; Nandy, A.; Saha, A.; De Feo, V.; Dewanjee, S. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front. Pharmacol. 2017, 8, 251. [CrossRef]
- Gothai, S.; Ganesan, P.; Park, S.Y.; Fakurazi, S.; Choi, D.K.; Arulselvan, P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016, 8, 461. [CrossRef]
- Qaseem, A.; Humphrey, L.L.; Sweet, D.E.; Starkey, M.; Shekelle, P. Oralpharmacologictreatmentoftype2 diabetes mellitus:AclinicalpracticeguidelinefromtheAmerican CollegeofPhysicians. Ann. Intern. Med. [PubMed] 2012, 156, 218–231. [CrossRef]
- Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol. [PubMed] 2018, 833, 472–523. [CrossRef]
- Dewanjee, S.; Bhattacharjee, N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem. Pharmacol. [PubMed] 2018, 155, 32–47. [CrossRef]
- Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol. [PubMed] 2016, 791, 8–24. [CrossRef]
- Khanra, R.; Bhattacharjee, N.; Dua, T.K.; Nandy, A.; Saha, A.; Kalita, J.; Manna, P.; Dewanjee, S. Taraxerol, apentacyclictriterpenoid,fromAbromaaugustaleafattenuatesdiabeticnephropathyintype2diabetic rats. Biomed. Pharmacother. 2017, 94, 726–741. [CrossRef]
- Xavier, G.D.S. Thecellsoftheisletsoflangerhans. J. Clin. Med. 2018, 7, 54.[CrossRef]
- Berenson, D.F.; Weiss, A.R.; Wan, Z.L.; Weiss, M.A. Insulin analogsforthetreatmentofdiabetesmellitus: Therapeutic applications of protein engineering. Ann. N. Y. Acad. Sci. 2011, 1243, E40–E54. [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. (Tokyo) 2006, 52, 149–153. [CrossRef]
- Kamiyama, O.; Sanae, F.; Ikeda, K.; Higashi, Y.; Minami, Y.; Asano, N.; Adachi, I.; Kato, A. In vitro inhibitionofa-glucosidasesandglycogenphosphorylasebycatechingallatesingreentea. Food Chem. 2010, 122, 1061–1066. [CrossRef]
- Arumugam, B.; Palanisamy, U.D.; Chua, K.H.; Kuppusamy, U.R. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J. Funct. Foods 2016, 22, 325–336. [CrossRef]