International Journal of Drug Delivery Technology
Volume 15, Issue 3

Polymeric Nanoparticles of Loratadine Betacyclodextrin Inclusion Complex: 32 Factorial Design, Optimization and In-vitro Evaluation

Preethi G B*, Ayushi P Jain 

Department of Pharmaceutics, KLE College of Pharmacy, Rajajinagar, Bengaluru-560010, KLE Academy of Higher Education and Research, Belagavi-590010, Karnataka, India

Received: 11th Dec, 2024; Revised: 15th Jun, 2025; Accepted: 10th Jul, 2025; Available Online: 25th Sep, 2025

ABSTRACT

Loratadine (LOR) a second-generation antihistaminic exhibits low water solubility and high permeability. In the present work an attempt was made to formulate LOR nanoparticles  to enhance dissolution rate and to prolong the release for oral delivery. With the objective of enhancing solubility of LOR, Loratadine-Betacyclodextrin inclusion complex (LOD-BCD) was prepared by solvent evaporation method. Later based on 32 factorial design 9 LOR-BCD polymeric nano formulations (L1 to L9) was formulated by solvent displacement technique by selecting LOR:BCD and Eudragit RS 100 (ERS) as independent variables. From in vitro studies the effect of independent variables on responses was found to agree Quadratic model and formulation LOR 4 was selected as optimized formulation with the particle size of 104.2nm, PDI of 0.274 and zero order in vitro drug release of 61.98±0.68%. The study concluded that LOR–BCD polymeric nanoparticles were successfully formulated using a validated factorial design, exhibiting improved dissolution and sustained drug release.

Keywords: Loratadine, Betacyclodextrin, Eudragit RS 100, BCS class II, Nanoparticles, Antihistamine, 32 Factorial design

How to cite this article: Preethi G B, Ayushi P Jain. Polymeric Nanoparticles of Loratadine Betacyclodextrin Inclusion Complex: 32 Factorial Design, Optimization and In-vitro Evaluation. International Journal of Drug Delivery Technology. 2025;15(3):934-40. doi: 10.25258/ijddt.15.3.4

REFERENCES

  1. Kavanagh JJ, Grant GD, Anoopkumar-Dukie S. Low dosage promethazine and loratadine negatively affect neuromotor function. Clin Neurophysiol. 2012;123(4):780-786. https://doi: 10.1016/j.clinph.2011.07.046.
  2. Gholamhossein S, Seyed AS, Nedasadat SA, Fariba. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J Supercrit Fluid.; 147:241-253. https://doi.org/10.1016/j.supflu.2018.11.007
  3. Maurer M, Church MK, Gonçalo M, Sussman G, Sánchez-Borges M. Management and treatment of chronic urticaria (CU). J Eur Acad Dermatol Venereol. 2015 29;3:16-32. https://doi.org/10.1111/jdv.13198
  4. Lin HL, Lin SY, Lin CC, Hsu CH, Wu TK, Huang YT. Mechanical grinding effect on thermodynamics and inclusion efficiency of loratadine-cyclodextrin inclusion complex formation. Carbohydr Polym. 2012 Jan 4;87(1):512-517. https://doi.org/10.1016/j.carbpol.2011.08.010
  5. Ambrus R, Alshweiat A, Csóka I, Ovari G, Esmail A, Radacsi N. 3D-printed electrospinning setup for the preparation of loratadine nanofibers with enhanced physicochemical properties. Int J Pharm. 2019 15;567:118455. https://doi.org/10.1016/j.ijpharm.2019.118455
  6. Rodriguez Amado JR, Prada AL, Duarte JL, et al. Development, stability and in vitrodelivery profile of new loratadine-loaded nanoparticles. Saudi Pharm J. 2017;25(8):1158-1168. https://doi.org/10.1016/j.jsps.2017.07.008
  7. Moses LR., Dileep K, & Sharma, CP. Beta cyclodextrin-insulin-encapsulated chitosan/alginate matrix: Oral delivery system. Journal of Applied Polymer Science, 75, 1089-1096.. Beta cyclodextrin–insulin‐encapsulated chitosan/alginate matrix: Oral delivery system. J. Appl. Polym. Sci. 2000;75:1089 - 1096. https://doi.org/10.1002/(SICI)1097-4628(20000228)75:9%3C1089::AID-APP1%3E3.0.CO;2-5
  8. Üner M., Fatma K.E., Aydoğmuş Z. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop. J. Pharm. Res. 2014;13(5):653–660. https://doi.org/10.4314/tjpr.v13i5.1
  9. Khan MZ, Rausl D, Zanoski R, Zidar S, Mikulcić JH, Krizmanić L, et al. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro-in vivo Biol Pharm Bull. 2004;27(10):1630-5. https://doi.org/10.1248/bpb.27.1630
  10. Prithviraj C, Versha P, Debarupa DC, Indranil C & Amitava G.Mathematical optimization and characterisation of pharmaceutically developed novel buccoadhesive wafers for rapid bioactive delivery of Loratadine. J Pharm Investig. 2013;43: 133–143. http://dx.doi.org/10.1007/s40005-013-0062-7
  11. Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit®Based Copolymer for Smart Healthcare. Pharmaceutics. 2023;15(2):587. https://doi.org/10.3390/pharmaceutics15020587
  12. Delf Loveymi B, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Statistical Optimization of Oral Vancomycin-Eudragit RS Nanoparticles Using Response Surface Methodology. Iran J Pharm Res. 2012;11(4):1001-12.
  13. Niranjan P, Richa P, Suryakanta S, Goutam KJ, Kahnu CP, Debashish G. Pharmaceutical significance of Eudragit: A review. Futur. J. Pharm. Sci.. 2017;3(1): 33-45. https://doi.org/10.1016/j.fjps.2017.02.001
  14. Amani El F, Catherine A. PLA nanoparticles coated with a β-cyclodextrin polymer shell: Preparation, characterization and release kinetics of a hydrophobic compound. J. Pharm. 2012;436(1–2),: 644-651. https://doi.org/10.1016/j.ijpharm.2012.07.052
  15. Hadian Z, Maleki M, Abdi K, Atyabi F, Mohammadi A, Khaksar R. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes. Iran J Pharm Res. 2018;17(1):39-51. https://doi.org/10.1016/j.foodchem.2022.134410.
  16. Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467. https://doi.org/10.1016/j.foodchem.2022.132467
  17. Rawat S, Jain SK. Solubility enhancement of celecoxib using beta-cyclodextrin inclusion complexes. Eur J Pharm Biopharm. 2004;57(2):263-7. https://doi.org/10.1016/j.ejpb.2003.10.020
  18. Gabriel Onn KL, Yvonne Tze FT, Kok-Khiang P. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci.. 2016; 11(4), 2016:536-546. https://doi.org/10.1016/j.ajps.2016.02.009
  19. Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L. Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl-β-cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity. J Agric Food Chem. 2021;69(21):5871-5881. https://doi.org/10.1021/acs.jafc.1c01351
  20. Priyanka A, Neera R. in vitro studies of Curcumin-β-cyclodextrin inclusion complex as sustained release system. J.Struct.. 2021;1228: 129774. https://doi.org/10.1016/j.molstruc.2020.129774
  21. Obaidat R, Al-Shar'i N, Tashtoush B, Athamneh T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. Pharm Dev Technol. 2018;23(10):986-997. https://doi.org/10.1080/10837450.2016.1245319
  22. Yardy A, Entz K, Bennett D, Macphail B, Adronov A. Incorporation of Loratadine-Cyclodextrin Complexes in Oral Thin Films for Rapid Drug Delivery. J Pharm Sci. 2024;113(5):1220-1227.
  23. Omar L, El‐Barghouthi MI, Masoud NA, Abdo AA, Al Omari MM, Zughul MB, et al. Inclusion Complexation of Loratadine with Natural and Modified Cyclodextrins: Phase Solubility and Thermodynamic Studies. J Solution Chem. 2007;36:605–616. https://doi.org/10.1016/j.xphs.2023.11.011
  24. Zhang P, Liu X, Hu W, Bai Y, Zhang L. Preparation and evaluation of naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym. 2016 ;149:224-30. https://doi.org/10.1016/j.carbpol.2016.04.115
  25. Pathak SM, Musmade P, Dengle S, Karthik A, Bhat K, Udupa N. Enhanced oral absorption of saquinavir with Methyl-Beta-Cyclodextrin-Preparation and in vitro and in vivo evaluation. Eur J Pharm Sci. 2010;41(3-4):440-51.
  26. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, Irache JM. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci. 2009;38(4):405-13. https://doi.org/10.1016/j.ejps.2010.07.013
  27. Patil J, Rajput R, Nemade R, & Naik J. Preparation and characterization of artemether loaded solid lipid nanoparticles: a 32factorial design approach. Tech.. 2018; 35(11–12):719–726. https://doi.org/10.1080/10667857.2018.1475142
  28. Sáska Zs, Dredan J, Balogh E, Luhn O, Shafir G, Antal I. Effect of isomalt as novel binding agent on compressibility of poorly compactable paracetamol evaluated by factorial design. Powder Technol. 2010; 201(2): 123–129. https://doi.org/10.1016/j.powtec.2010.03.009
  29. Barzegar-Jalali M, Alaei-Beirami M, Yousef J, Ghobad M, Aliasghar H, Sina A et al. Comparison of physicochemical characteristics and drug release of diclofenac sodium–Eudragit RS100 nanoparticles and solid dispersions. Powder Technology. 2012; 219: 211–216. https://doi.org/10.1016/j.powtec.2011.12.046
  30. Ji J, Hao S, Liu W, Zhang J, Wu D, Xu Yi.Preparation and evaluation of O-carboxymethyl chitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers.  Bull. 2000;67:1201–1213. http://dx.doi.org/10.1007/s00289-011-0449-4
  31. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14. https://doi.org/10.4103/1735-5362.199041
  32. Makhlof A, Miyazaki Y, Tozuka Y, Takeuchi H. Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int J Pharm. 2008;357(1-2):280-5. doi:10.1016/j.ijpharm.2008.01.025
  33. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361-70. https://doi.org/10.1016/j.foodchem.2013.12.067
  34. Shozan M, Md.Tauhidul I, Md. Sharifur R, Md. Ariful I. Dissolution Enhancement of Loratadine by Formulating Oleic Acid and Cremophor EL Based Self Emulsifying Drug Delivery System (SEDDS). J.Appl.Pharm. Sci. 2013; 3 (07): 64-67. DOI: 10.7324/JAPS.2013.3712
  35. Dissolution – FDA. https://www.accessdata.fda.gov/scripts/cder/dissolution/index.cfm
  36. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001 ;13(2):123-33. https://doi.org/10.1016/S0928-0987(01)00095-1
  37. Connors KA, Higuchi T. Phase solubility techniques. Adv. Anal. Chem. Instrum. 1965;4:117-212.
  38. Singh RM, Kumar A, Pathak K. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech. 2013;14(1):412-24. https://doi.org/10.1208/s12249-013-9921-9
  39. Asif AH, Desu PK, Alavala RR, Rao GSNK, Sreeharsha N, Meravanige G. Development, Statistical Optimization and Characterization of Fluvastatin Loaded Solid Lipid Nanoparticles: A 32Factorial Design Approach. Pharmaceutics. 2022;14(3):584. https://doi.org/10.3390/pharmaceutics14030584
  40. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules. 2018;23(5):1161. https://doi.org/10.3390/molecules23051161
  41. Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm. 2013;83(3):378-87. https://doi.org/10.1016/j.ejpb.2012.11.003
  42. Erdoğar N, Esendağlı G, Nielsen TT, Şen M, Öner L, Bilensoy E. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. Int J Pharm. 2016;509(1-2):375-390. https://doi.org/10.1016/j.ijpharm.2016.05.040
  43. Trapani A, Laquintana V, Denora N, Lopedota A, Cutrignelli A, Franco M, et al. Eudragit RS 100 microparticles containing 2-hydroxypropyl-beta-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur J Pharm Sci. 2007;30(1):64-74. https://doi.org/10.1016/j.ejps.2006.10.003
  44. Elmotasem H, Awad GEA. A stepwise optimization strategy to formulate in situgelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J Pharm Sci. 2020;15(5):617-636. https://doi.org/10.1016/j.ajps.2019.09.003
  45. Narendra C, Srinath MS, Prakash Rao B. Development of three layered buccal compact containing metoprolol tartrate by statistical optimization technique. Int J Pharm. 2005;304(1-2):102-14. https://doi.org/10.1016/j.ijpharm.2005.07.021
  46. Fernando F, Josimar de OE, Carmen M D, Marcia LM, Juliana MM. Dissolution rate enhancement of loratadine in polyvinyl pyrrolidine K-30 Solid dispersions by solvent methods. Powder Technol. 2013; 235: 532-539. https://doi.org/10.1016/j.powtec.2012.10.019
  47. Wen X, Tan F, Jing Z, Liu Z. Preparation and study the 1:2 inclusion complex of carvedilol with beta-cyclodextrin. J Pharm Biomed Anal. 2004;34(3):517-23. https://doi.org/10.1016/S0731-7085(03)00576-4
  48. Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10(5):054107. https://doi.org/10.1063/1.4962992
  49. Radhakant G, Himankar B, Zhao Q. Application of Mathematical Models in Drug Release Kinetics of Carbidopaand Levodopa ER Tablets. Dev. Drugs. 2017; 6 (2): 1-8. http://dx.doi.org/10.4172/2329-6631.1000171