International Journal of Drug Delivery Technology
Volume 15, Issue 3

Phytochemical Validation and Wound Healing Efficacy of a Polyherbal Gel using HPLC and Zebrafish Models

Mekala K, Shaheedha S M* 

Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamilnadu, India

Received: 1st Jul, 2025; Revised: 23rd Aug, 2025; Accepted: 2nd Sep, 2025; Available Online: 25th Sep, 2025

ABSTRACT

Background: Wound healing is a multifaceted physiological process involving inflammation, tissue regeneration and remodeling. Silver sulfadiazine remains a conventional topical treatment; its clinical use is often limited by delayed epithelialization and cytotoxicity. Medicinal plants, rich in diverse bioa ctive compounds, are recognized as safer alternatives for wound management. Hence, this study aimed to formulate a standardized polyherbal gel using Trigonella foenum-graecum, Lawsonia inermis, Basella alba, Peristrophe paniculata and Portulaca oleracea and to evaluate its phytochemical composition and wound-healing efficacy.

Methods: A Carbopol-based gel incorporating hydroalcoholic extracts of the selected plants was developed. High-performance liquid chromatography (HPLC) was employed to identify and quantify key phytoconstituents, protocatechuic acid, syringic acid, kaempferol, apigenin and diosmetin. In vivo evaluation was conducted using zebrafish (Danio rerio) wound models, including superficial mechanical injury and tail fin transection, with wound closure assessed for seven days. Histopathological analyses were also performed.

Results: HPLC analysis confirmed the stability and quantifiable presence of bioactive phytochemicals, with excellent linearity (R² > 0.999). The polyherbal gel demonstrated significant wound-healing activity, with wound closure rates of 88.7% ± 2.7 in mechanical injury and 94.5% ± 2.1 in tail fin transection by Day 7, outperforming untreated controls and exhibiting superior efficacy to 1% silver sulfadiazine. Histopathological assessment revealed organized re-epithelialization, restored fin structure and reduced inflammation in gel-treated groups.

Conclusion: The formulated polyherbal gel offers a safe, biocompatible and efficacious topical therapy for wound healing. Its synergistic phytoconstituents contribute to enhanced regeneration, supporting its potential for further preclinical and clinical translation in wound care.

Keywords: Polyherbal gel, wound healing, zebrafish model, HPLC, flavonoids, phenolic acids

How to cite this article: Mekala K, Shaheedha S M. Phytochemical Validation and Wound Healing Efficacy of a Polyherbal Gel using HPLC and Zebrafish Models. International Journal of Drug Delivery Technology. 2025;15(3):1331-39. doi: 10.25258/ijddt.15.3.55

REFERENCES

  1. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling and translation. Sci Transl Med. 2014;6:265sr6. doi:10.1126/scitranslmed.3009337
  2. Broughton G, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006;117(7) Suppl:1e–S. doi:10.1097/01.prs.0000222562.60260.f9
  3. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21. doi:10.1038/nature07039
  4. Chaudhary G, Goyal S, Poonia P. Lawsonia inermis Linnaeus: A phytopharmacological review. Int J Pharm Sci Drug Res. 2010;2:91–8. doi:10.25004/IJPSDR.2010.020202
  5. Sharma RD, Raghuram TC, Rao NS. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr. 1990;44:301–6
  6. Khanom B, Nahida U, Shapla S, Akter M, Farzana H, Zaman F et al. Phytochemical and pharmacological review on Basella alba Pharmacologyonline. 2019;1:40–8
  7. Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea: a review of phytochemistry and pharmacological effects. BioMed Res Int. 2015;2015:925631. doi:10.1155/2015/925631
  8. K M, Banu K J, L V, V K. Brummit, Peristrophe paniculata (Forssk.)—a common tropical medicinal herb. Res J Pharmacogn Phytochem. 2023;15:249–54. doi:10.52711/0975-4385.2023.00039
  9. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A et al. Kaempferol: A key emphasis to its anticancer potential. Molecules. 2019;24:2277. doi:10.3390/molecules24122277
  10. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi:10.1017/jns.2016.41
  11. Khursheed R, Singh SK, Kapoor B, Gulati M, Wadhwa S, Gupta S, et al. Development and validation of RP-HPLC method for simultaneous determination of curcumin and quercetin in extracts, marketed formulations and self-nanoemulsifying drug delivery system. Re:GEN Open. 2021;1:43–52. doi:10.1089/regen.2021.0021
  12. Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin, a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr. 2025;65:4529–65. doi:10.1080/10408398.2024.2390550
  13. Cirillo G, Parisi OI, Restuccia D, Puoci F, Picci N. Antioxidant activity of phenolic acids: correlation with chemical structure and in vitro assays for their analytical determination. In: Phenolic Acids Compos Appl Health Benefits. 2012:73–96
  14. White MJ, Heckler FR. Oxygen free radicals and wound healing. Clin Plast Surg. 1990;17:473–84. doi:10.1016/S0094-1298(20)30622-2
  15. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18. doi:10.18632/oncotarget.23208
  16. Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet. 2010;11:710–22. doi:10.1038/nrg2879
  17. Pfefferli C, Jaźwińska A. The art of fin regeneration in zebrafish. Regeneration (Oxf). 2015;2:72–83. doi:10.1002/reg2.33
  18. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8:353–67. doi:10.1038/nrg2091
  19. Richardson R, Slanchev K, Kraus C, Knyphausen P, Eming S, Hammerschmidt M. Adult zebrafish as a model system for cutaneous wound-healing research. J Invest Dermatol. 2013;133:1655–65. doi:10.1038/jid.2013.16
  20. Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Safety assessment of glycerin as used in cosmetics. Int J Toxicol. 2019;38:6S–22S. doi:10.1177/1091581819883820
  21. Sharma A, Kaur J, Goyal A. Carbopol 940 vs carbol 904: a better polymer for hydrogel formulation. Res J Pharm Technol. 2021;14:1561–4. doi:10.5958/0974-360X.2021.00275.4
  22. Sousa Borges R, César Matias Pereira A, Custodio de Souza G, Carlos Tavares Carvalho J. Histopathology of zebrafish (Danio rerio) in nonclinical toxicological studies of new drugs. In: Zebrafish in Biomedical Research. (edited by: Y Bozkurt). IntechOpen; 2020. doi:10.5772/intechopen.88639
  23. Pawar SR, Patel P, Jain K. Herbal formulations: development, challenges, testing, stability and regulatory guidelines. In: Advances in Pharmaceutical Product Development. (edited by: K Jain & AK Yadav). Singapore: Springer Nature; 2025. doi:10.1007/978-981-97-9230-6_15. 379–97
  24. Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130:769–74. doi:10.1016/j.cell.2007.08.021
  25. Yadav SK, Mishra MK, Tiwari A, Shukla A. Emulgel: a new approach for enhanced topical drug delivery. Int J Curr Pharm Res. 2016;9:15. doi:10.22159/ijcpr.2017v9i1.16628
  26. Touitou E, Godin B, Weiss C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev Res. 2000;50:406–15. doi:10.1002/1098-2299(200007/08)50:3/4<406::AID-DDR23>3.0.CO;2-M
  27. Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine. 2001;8:401–9. doi:10.1078/0944-7113-00060
  28. Cock IE, Selesho MI, Van Vuuren SF. A review of the traditional use of southern African medicinal plants for the treatment of selected parasite infections affecting humans. J Ethnopharmacol. 2018;220:250–64. doi:10.1016/j.jep.2018.04.001
  29. Sharma V, Singh J, Kumar Y, Kumar A, Venkatesan K, Mukherjee M, Sharma AK. Integrated insights into gene expression dynamics and transcription factor roles in diabetic and diabetic-infectious wound healing using rat model. Life Sci. 2025;368:123508. doi:10.1016/j.lfs.2025.123508
  30. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi:10.1111/j.1524-475X.2008.00410.x
  31. Feng BY, Shoichet BK. Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J Med Chem. 2006;49:2151–4. doi:10.1021/jm060029z
  32. Wagner H. Synergy research: a new approach to evaluating the efficacy of herbal mono-drug extracts and their combinations. Nat Prod Commun. 2009;4:1934578X0900400228:303–4. doi:10.1177/1934578X0900400228
  33. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49 Suppl 1:3–8. doi:10.1016/S0026-0495(00)80077-3
  34. World Health Organization. WHO Guidelines on Good Manufacturing Practices (GMP) for Herbal Medicines. [Internet]. Geneva: World Health Organization; [cited 2025 Aug 21]. Available from: https://www.who.int
  35. Firenzuoli F, Gori L. Herbal medicine today: clinical and research issues. Evid Based Complement Alternat Med. 2007;4 Suppl 1:37–40. doi:10.1093/ecam/nem096
  36. Gorain B, Pandey M, Leng NH, Yan CW, Nie KW, Kaur SJ, et al. Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm. 2022;617:121617. doi:10.1016/j.ijpharm.2022.121617
  37. Pathak A, Gupta AP, Pandey P. Herbal medicine and sustainable development: challenges and opportunities; 2024. In: 1–26. doi:10.1007/978-3-031-21973-3_48-1
  38. O’Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. 2014;2014:CD003557. doi:10.1002/14651858.CD003557.pub5