A Review on Phytochemical Loaded Nanosponges
D Anusha Reddy, A Vijayalakshmi*
School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu-600117, India
Received: 9th May, 2025; Revised: 16th Aug, 2025; Accepted: 3rd Sep, 2025; Available Online: 25th Sep, 2025
ABSTRACT
Nanomaterials, particularly nanosponges, have shown significant promise in drug delivery and cancer therapy due to their excellent penetration, absorption, biocompatibility, bioavailability, and stability. Nanosponges are crystalline, crosslinked, polymer structures, nansized, porous, and have three-dimensional, hyper-reticulated, structures that are capable of encapsulating an assortment of compounds. Other examples include cyclodextrin based nanosponges, which can be used to create complexes with drugs to increase their solubility and bioavailability as can be seen with its use in delivering lapatinib anticancer drug. Although they are at a very early stage of development and only small molecules are covered, current research is concerned with creativity that innovative designs and synthesis processes have to be made in order to enhance their efficacy and safety. The phytochemical loaded nanosponges are an up and coming development in the field of drug conveyance that shows promising new solubility, controlled discharge, targeting, and upgraded stability of helpful chemicals. The nanosponges are flexible and can be used in a variety of applications, whether it is medical or cosmetic, environmental or food industry. As an example, they can complex with anticancer phytochemicals like curcumin, quercetin and resveratrol where they enhance their therapeutic benefit. Nonetheless, issues like manufacturing complexities, possible toxicity, and regulatory issues need to be surmounted. All in all, phytochemical packed nanosponges offer a new and efficient approach to utilize the therapeutic potential of natural molecules; thus, this is an interesting direction in the development of nanomedicine and cancer treatment.
Keywords: Novel Drug Delivery, Nanosponges, Phytochemicals and Nano Medicine
How to cite this article: D Anusha Reddy, A Vijayalakshmi. A Review on Phytochemical Loaded Nanosponges. International Journal of Drug Delivery Technology. 2025;15(3):1426-32. doi: 10.25258/ijddt.15.3.66
REFERENCES
- Vitthal, P., & Anuradha, S. (2020). A review on microsponges drug delivery system. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), E-ISSN, 2348-1269.
- Jain, N., Devi, V. K., & Dang, E. B. (2013). Micro sponges: A novel drug delivery system. APTI Bulletin, 15, 81.
- Vishwakarma, A., Nikam, P., Mogal, R., & Talele, S. (2014). Review on nanosponges: A benefication for novel drug delivery. International Journal of PharmTech Research, 6(1), 11–20.
- Sharma, R., Walker, R. B., & Pathak, K. (n.d.). Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel.
- Eki, S., Lei, T., Jingquan, L., Zhongfan, J., Cyrille, B., & Thomas, P. D. (2009). Biodegradable star polymers functionalized with cyclodextrin inclusion complexes. Biomacromolecules, 10(9), 2699–2707. https://doi.org/10.1021/bm900614p
- Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., & Cavalli, R. (2010). Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 74(2), 193–201. https://doi.org/10.1016/j.ejpb.2009.11.003
- Vyas, A., Saraf, S., & Saraf, S. (2008). Cyclodextrin based novel drug delivery systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 62(1), 23–42. https://doi.org/10.1007/s10847-008-9452-2
- Rajeswari, C., Alka, A., Javed, A., & Khar, R. K. (2005). Cyclodextrins in drug delivery: An update review. AAPS PharmSciTech, 6(2), E329–E357. https://doi.org/10.1208/pt060243
- Krishnamoorthy, K., & Rajappan, M. (2012). Nanosponges: A novel class of drug delivery system—Review. Journal of Pharmacy & Pharmaceutical Sciences, 15(1), 103–111. https://doi.org/10.18433/j3x30w
- Ramnik, S., Nitin, B., Jyotsana, M., & Horemat, S. N. (2010). Characterization of cyclodextrin inclusion complexes – A review. Journal of Pharmaceutical Science and Technology, 2(3), 171–183.
- Wolfgang, S. (2013). Sample preparation in light scattering from and nanoparticle dispersions. International Journal of Pharmaceutics, 344(1–2), 33–43. https://doi.org/10.1007/978-3-540-71058-9_2
- Aithal, K. S., Udupa, N., & Sreenivasan, K. K. (1995). Physicochemical properties of drug-cyclodextrin complexes. Indian Drugs, 32(7), 293–305.
- Duchêne, D. E., Vaution, C., & Glomot, F. (1986). Cyclodextrins, their value in pharmaceutical technology. Drug Development and Industrial Pharmacy, 12(11–13), 2193–2215. https://doi.org/10.3109/03639048609028862
- Tayade, P., & Vavia, P. (2006). Inclusion complexes of ketoprofen with β-cyclodextrins: Oral pharmacokinetics of ketoprofen in human. Indian Journal of Pharmaceutical Sciences, 68(2), NA.
- Varan, C., Anceschi, A., Sevli, S., Bruni, N., Giraudo, L., Bilgiç, E., Korkusuz, P., Iskit, A. B., Trotta, F., & Bilensoy, E. (2020). Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. International Journal of Pharmaceutics, 585, 119485. https://doi.org/10.1016/j.ijpharm.2020.119485
- Pawar, S., & Shende, P. (2020). A comprehensive patent review on β-cyclodextrin cross-linked nanosponges for multiple applications. Recent Patents on Nanotechnology, 14(1), 75–89. https://doi.org/10.2174/1872210514666200117105719
- Varma, R. S. (2012). Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2), 123–128. https://doi.org/10.1016/j.coche.2012.02.009
- Varma, R. S. (2014). Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chemistry, 16(4), 2027–2041. https://doi.org/10.1039/C3GC42638D
- Varma, R. S. (2014). Greener and sustainable chemistry. Applied Sciences, 4(4), 493–497. https://doi.org/10.3390/app4040493
- Varma, R. S. (n.d.). Greener and sustainable trends in synthesis of organics and nanomaterials.
- Varma, R. S. (2019). Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chemistry & Engineering, 7(7), 6458–6470. https://doi.org/10.1021/acssuschemeng.9b00658
- Sharma, K., Kadian, V., Kumar, A., Mahant, S., & Rao, R. (2022). Evaluation of solubility, photostability and antioxidant activity of ellagic acid cyclodextrin nanosponges fabricated by melt method and microwave-assisted synthesis. Journal of Food Science and Technology, 59(3), 898–908. https://doi.org/10.1007/s13197-021-05063-2
- Ciesielska, A., Ciesielski, W., Girek, B., Girek, T., Koziel, K., Kulawik, D., & Lagiewka, J. (2020). Biomedical application of cyclodextrin polymers cross-linked via dianhydrides of carboxylic acids. Applied Sciences, 10(23), 8463. https://doi.org/10.3390/app10238463
- Caldera, F., Tannous, M., Cavalli, R., Zanetti, M., & Trotta, F. (2017). Evolution of cyclodextrin nanosponges. International Journal of Pharmaceutics, 531(2), 470–479. https://doi.org/10.1016/j.ijpharm.2017.08.096
- Jain, A., Prajapati, S. K., Kumari, A., Mody, N., & Bajpai, M. (2020). Engineered nanosponges as versatile biodegradable carriers: An insight. Journal of Drug Delivery Science and Technology, 57, 101643. https://doi.org/10.1016/j.jddst.2020.101643
- Kumari, P., Singh, P., & Singhal, A. (2020). Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environmental Science and Pollution Research, 27(26), 32432–32448. https://doi.org/10.1007/s11356-020-09004-4
- Khazaei Monfared, Y., Mahmoudian, M., Cecone, C., Caldera, F., Zakeri-Milani, P., Matencio, A., & Trotta, F. (2022). Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers, 14(3), 594. https://doi.org/10.3390/polym14030594
- Taka, A. L., Pillay, K., & Mbianda, X. Y. (2017). Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from wastewater: A review. Carbohydrate Polymers, 159, 94–107. https://doi.org/10.1016/j.carbpol.2016.12.016
- Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E. M., & Perfler, R. (2006). Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environmental Science & Technology, 40(8), 2771–2777. https://doi.org/10.1021/es051870n
- Singh, P., Ren, X., Guo, T., Wu, L., Shakya, S., He, Y., Wang, C., Maharjan, A., Singh, V., & Zhang, J. (2018). Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydrate Polymers, 190, 23–30. https://doi.org/10.1016/j.carbpol.2018.02.059
- Trotta, F., Zanetti, M., & Cavalli, R. (2012). Cyclodextrin-based nanosponges as drug carriers. Beilstein Journal of Organic Chemistry, 8, 2091–2099. https://doi.org/10.3762/bjoc.8.235
- Shivani, S., & Poladi, K. K. (2015). Nanosponges – Novel emerging drug delivery system: A review. International Journal of Pharmaceutical Sciences and Research, 6(2), 529–535. https://doi.org/10.13040/IJPSR.0975-8232.6(2).529-35
- Singh, D., Soni, G. C., & Prajapati, S. K. (2016). Recent advances in nanosponges as drug delivery system: A review. European Journal of Pharmaceutical and Medical Research, 3(10), 364–371.
- Pawar, A. Y. (2016). Nanosponges: A novel drug delivery system. Asian Journal of Pharmaceutics (AJP), 10(4), NA. https://doi.org/10.22377/ajp.v10i04.801
- Selvamuthukumar, S., & Anandam, S. (2012). Nanosponges: A novel class of drug delivery system – Review. Journal of Pharmacy & Pharmaceutical Sciences, 15(1), 103–111. https://doi.org/10.18433/J3C30W
- Chilajwar, S. V., Pednekar, P. P., Jadhav, K. R., Gupta, G. J., & Kadam, V. J. (2014). Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opinion on Drug Delivery, 11(1), 111–120. https://doi.org/10.1517/17425247.2014.860134
- Thakre, A. R., Gholse, Y. N., & Kasliwal, R. H. (2016). Nanosponges: A novel approach of drug delivery system. Journal of Medical Pharmaceutical and Allied Sciences, 78(92), 78.
- Osmani, R. A., Kulkarni, P., Manjunatha, S., Gowda, V., Hani, U., Vaghela, R., & Bhosale, R. (2018). Cyclodextrin nanosponges in drug delivery and nanotherapeutics. In Environmental Nanotechnology: Volume 1 (pp. 279–342). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-66733-1_9
- Bolmal, U. B., Manvi, F. V., Kotha, R., Palla, S. S., Paladugu, A., & Reddy, K. R. (2013). Recent advances in nanosponges as drug delivery system. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 6(1), 1934–1944.
- Mane, P. T., Wakure, B. S., & Wakte, P. S. (2021). Cyclodextrin-based nanosponges: A multidimensional drug delivery system and its biomedical applications. Current Drug Delivery, 18(10), 1467–1493. https://doi.org/10.2174/1567201819666210728111757
- Jagtap, S. R., Bhusnure, O. G., Mujewar, I. N., Gholve, S. B., & Panchabai, V. B. (2019). Nanosponges: A novel trend for targeted drug delivery. Journal of Drug Delivery and Therapeutics, 9(3s), 931–938. https://doi.org/10.22270/jddt.v9i3-s.2956
- Iravani, S., & Varma, R. S. (2022). Nanosponges for drug delivery and cancer therapy: Recent advances. Nanomaterials, 12(14), 2440. https://doi.org/10.3390/nano12142440
- Tiwari, K., & Bhattacharya, S. (2022). The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. Journal of Materials Science: Materials in Medicine, 33(3), 28. https://doi.org/10.1007/s10856-022-06607-2
- Naga, S. J., Nissankararao, S., Bhimavarapu, R., Sravanthi, S. L., & Vinusha, K. (2013). Nanosponges: A versatile drug delivery system. International Journal of Pharmacy & Life Sciences, 4(8).
- Sadhasivam, J., Sugumaran, A., & Narayanaswamy, D. (2020). Nano sponges: A potential drug delivery approach. Research Journal of Pharmacy and Technology, 13(7), 3442–3448. https://doi.org/10.5958/0974-360X.2020.00604.2
- Jani, R. K., Patel, N., Patel, Z., Chakraborthy, G. S., & Upadhye, V. (2022). Nanosponges as a biocatalyst carrier—An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies. Biocatalysis and Agricultural Biotechnology, 42, 102329. https://doi.org/10.1016/j.bcab.2022.102329
- dos Passos Menezes, P., de Araújo Andrade, T., Frank, L. A., Trindade, G. D., Trindade, I. A., Serafini, M. R., Guterres, S. S., & de Souza Araújo, A. A. (2019). Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. International Journal of Pharmaceutics, 559, 312–328. https://doi.org/10.1016/j.ijpharm.2019.01.028