International Journal of Drug Delivery Technology
Volume 15, Issue 3

Beta Glucans: The 21st Century's Multifunctional Key to Drug Delivery

Shradha Pramod Chaudhari1, Shikha Vikrant Gaikwad1*, Satish Arunrao Polshettiwar2, Pranali Prakash Polshettiwar2 

1Department of Biosciences and Technology, School of Sciences and Environmental Studies, Faculty of Sciences and Health Sciences, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune-411038, Maharashtra, India

2Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune-411038, Maharashtra, India 

Received: 15th May, 2025; Revised: 29th Jul, 2025; Accepted: 16th Sep, 2025; Available Online: 25th Sep, 2025 

ABSTRACT

β-Glucans are naturally occurring polysaccharides composed of β-D-glucose units, increasingly recognized for their multifunctional roles in human health and industrial biotechnology. Their physicochemical parameters, including molecular weight, branching, solubility, and viscosity, critically determine biological activity, rendering them superior to α-glucans in nutraceutical, pharmaceutical, and cosmeceutical applications. The motivation for this review arises from the need to integrate fragmented knowledge into a unified framework that connects structural attributes with therapeutic and industrial outcomes. This review consolidates evidence from biochemical, biophysical, and molecular studies, emphasizing β-glucan interactions with immune receptors, including Complement Receptor 3, Lactosylceramide, Scavenger Receptors, and Dectin-1, which mediate antifungal defense, immune regulation, and the control of inflammation. The scope further extends to their expanding applications in the food, beverage, healthcare, cosmetics, animal feed, agriculture, vaccine adjuvant, and biotechnology sectors. Importantly, emerging molecular docking studies highlight their ability to function as immune checkpoint modulators, opening novel opportunities in cancer immunotherapy. Key findings highlight β-glucans as versatile, sustainable agents that bridge nutrition, medicine, and industry. The uniqueness of this work lies in its holistic synthesis of structure–function relationships and translational relevance, positioning β-glucans as pivotal 21st-century biomolecules for advancing drug delivery and global innovation.

Keywords: β-Glucans; Polysaccharide; Nutraceutical; Cosmeceuticals; Immune pathway; Receptors

How to cite this article: Shradha Pramod Chaudhari, Shikha Vikrant Gaikwad, Satish Arunrao Polshettiwar, Pranali Prakash Polshettiwar. Beta Glucans: The 21st Century's Multifunctional Key to Drug Delivery. International Journal of Drug Delivery Technology. 2025;15(3):1433-44. doi: 10.25258/ijddt.15.3.67

REFERENCES

  1. Chaudhari S, Gaikwad S, Polshettiwar S, Ram S. A Comprehensive Review on the Sources, Biosynthesis, Extraction, and Characterization of β-Glucans. Research Journal of Pharmacy and Technology. 2025;18(1):143–151.DOI:10.52711/0974-360X.2025.00022
  2. Chaudhari S, Nair B, Tambe S, Joshi P, Polshettiwar S. Future Trends in Emerging Technologies in Fungal Biotechnology. Fungal Biotechnology. 2026:233–244.
  3. Şengül M, Ufuk S. Therapeutic and functional properties of beta-glucan, and its effects on health. Eurasian Journal of Food Science and Technology. 2022;6(1):29–41.
  4. Chaudhari S, Gaikwad S, Polshettiwar S. Unlocking the Immunotherapeutic Potential of Beta Glucan in Skin Melanoma: An In-Silico Study Targeting PD-L1. In: Unlocking Horizons in Global Multi-Disciplinary Healthcare Research. Bulletin of Pharmaceutical Research [ISSN: 2249-6041 (Print); ISSN: 2249-9245 (Online)], the official publication of the Association of Pharmacy Professionals (APP).; 2025.
  5. Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. International Journal of Molecular Sciences. 2022;23(6). DOI:10.3390/ijms23063156
  6. Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics. 2023;15(6). DOI:10.3390/pharmaceutics15061615
  7. Du B, Meenu M, Liu H, Xu B. A concise review on the molecular structure and function relationship of β-glucan. International Journal of Molecular Sciences. 2019;20(16). DOI:10.3390/ijms20164032
  8. Kaur R, Sharma M, Ji D, Xu M, Agyei D. Structural features, modification, and functionalities of beta-glucan. Fibers. 2020;8(1).DOI:10.3390/fib8010001
  9. Faure A, Knüsel R, Nyström L. Effect of the temperature on the degradation of β-glucan promoted by iron (II). Bioactive Carbohydrates and Dietary Fibre. 2013;2:99–107. DOI:10.1016/j.bcdf.2013.09.003
  10. Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi Journal of Biological Sciences. 2021;28(12):6765–6773. DOI:10.1016/j.sjbs.2021.07.051
  11. Zhang M, Zhang Y, Zhang L, Tian Q. Chapter Thirteen - Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. In: Zhang L, editor. Progress in Molecular Biology and Translational Science. Vol. 163. Academic Press; 2019. pp. 297–328. DOI: 1016/bs.pmbts.2019.02.013
  12. Mudgil D. The Interaction Between Insoluble and Soluble Fiber. In: Samaan RA, editor. Dietary Fiber for the Prevention of Cardiovascular Disease. Academic Press; 2017. pp. 35–59.DOI:10.1016/B978-0-12-805130-6.00003-3
  13. Vasquez-Orejarena E, Simons CT, Litchfield JH, Alvarez VB. Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan. Journal of Food Science. 2018;83(5):1360–1365. DOI:10.1111/1750-3841.14119
  14. Chiozzi V, Eliopoulos C, Markou G, Arapoglou D, Agriopoulou S, El Enshasy HA, Varzakas T. Biotechnological addition of β-glucans from cereals, mushrooms and yeasts in foods and animal feed. Processes. 2021;9(11). DOI:10.3390/pr9111889
  15. Wang Q, Sheng X, Shi A, Hu H, Yang Y, Liu L, Fei L, Liu H. β-Glucans: Relationships between modification, conformation and functional activities. Molecules. 2017;22(2).
  16. Bai J, Li Y, Zhang W, Fan M, Qian H, Zhang H, Qi X, Wang L. Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway. Food Bioscience. 2021;41. DOI:10.1016/j.fbio.2021.101010
  17. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, et al. Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition. 2017;57(2):237–253. DOI:10.1080/10408398.2014.939263
  18. Xie Y, Shao F, Duan X, Ding J, Ning Y, Sun X, Xia L, Pan J, Chen J, He S, et al. Whole β-glucan particle attenuates AOM/DSS-induced colorectal tumorigenesis in mice via inhibition of intestinal inflammation. Frontiers in Pharmacology. 2023;14. DOI:10.3389/fphar.2023.1017475
  19. Biasato I, Hernandez-Patlan D, Tellez-Isaias G, Schwartz B, Bar-Dagan H, Gover O, Cohen NA, Vetvicka V, Rozenboim I. Beta-glucans induce cellular immune training and changes in intestinal morphology in poultry.DOI:10.3389/fvets.2022.1092812
  20. Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods. 2023;12(3). DOI:10.3390/foods12030659
  21. Bergandi L, Apprato G, Silvagno F. Vitamin d and beta-glucans synergically stimulate human macrophage activity. International Journal of Molecular Sciences. 2021;22(9). DOI:10.3390/ijms22094869
  22. Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Frontiers in Nutrition. 2023;10. DOI: 10.3389/fnut.2023.1143682
  23. Hadiuzzaman M, Moniruzzaman M, Shahjahan M, Bai SC, Min T, Hossain Z. β-Glucan: Mode of Action and Its Uses in Fish Immunomodulation. Frontiers in Marine Science. 2022;9. DOI:10.3389/fmars.2022.905986
  24. Voycheva C. Immunomodulatory Аspects and Mechanisms of Аction of β-Glucans. Open Access Journal of Pharmaceutical Research. Immunomodulatory Аspects and Mechanisms of Аction of β-Glucans.2017; DOI: 10.23880/oajpr-16000132
  25. Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Frontiers in Immunology. 2020;11. DOI: 10.3389/fimmu.2020.00658
  26. Frioui M, Shamtsyan M, Zhilnikova NA. Development of new methods for isolation of mushroom beta-glucans for the use in the food industry and their comparative evaluation. 2018.
  27. Chatterjee S, Balram A, Li W. Convergence: lactosylceramide-centric signaling pathways induce inflammation, oxidative stress, and other phenotypic outcomes. International Journal of Molecular Sciences. 2021;22(4):1–25.DOI: 10.3390/ijms22041816.
  28. Vetvicka V, Teplyakova T V., Shintyapina AB, Korolenko TA. Effects of medicinal fungi‐derived β‐glucan on tumor progression. Journal of Fungi. 2021;7(4). DOI: 10.3390/jof7040250.
  29. Pombinho R, Sousa S, Cabanes D. Scavenger Receptors: Promiscuous Players during Microbial Pathogenesis. Critical Reviews in Microbiology. 2018;44(6):685–700. DOI:10.1080/1040841X.2018.1493716
  30. Dulal HP, Nagae M, Ikeda A, Morita-Matsumoto K, Adachi Y, Ohno N, Yamaguchi Y. Enhancement of solubility and yield of a β-glucan receptor Dectin-1 C-type lectin-like domain in Escherichia coli with a solubility-enhancement tag. Protein Expression and Purification. 2016;123:97–104. DOI:10.1016/j.pep.2016.04.002
  31. Mykhalevych A, Polishchuk G, Nassar K, Osmak T, Buniowska-Olejnik M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules. 2022;27(19). DOI:10.3390/molecules27196313
  32. Sengül M, Ufuk S. Therapeutic and Functional Properties of Beta-Glucan and Its Effects on Health. Eurasian Journal of Food Science and Technology. 2022(29).
  33. Lante A, Canazza E, Tessari P. Beta-Glucans of Cereals: Functional and Technological Properties. Nutrients. 2023;15(9). DOI: 10.3390/nu15092124.
  34. Khorshidian N, Yousefi M, Shadnoush M, Mortazavian AM. An Overview of β-Glucan Functionality in Dairy Products. Current Nutrition & Food Science. 2018;14(4):280–292. DOI:10.2174/1573401313666170609092748
  35. Zhao P, Li N, Chen L, Guo Y, Huang Y, Tong L, Wang L, Fan B, Wang F, Liu L. Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules. 2023;28(7). DOI:10.3390/molecules28073067
  36. Bacha U, Nasir M, Iqbal S, Anjum AA. Nutraceutical, Anti-Inflammatory, and Immune Modulatory Effects of β-Glucan Isolated from Yeast. BioMed Research International. 2017;2017. DOI:10.1155/2017/8972678
  37. Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-glucans from fungi: Biological and health-promoting potential in the covid-19 pandemic era. Nutrients. 2021;13(11). DOI:10.3390/nu13113960
  38. Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Critical Reviews in Food Science and Nutrition. 2023;63(22):5890–5910. DOI:10.1080/10408398.2022.2025535
  39. Ciecierska A, Drywień ME, Hamulka J, Sadkowski T. Nutraceutical Functions of Beta-Glucans. Roczniki Panstwowego Zakladu Higieny / Annals of the National Institute of Hygiene. 2019;70(4):315–324.DOI: 10.32394/rpzh.2019.0082
  40. Maheshwari G, Sowrirajan S, Joseph B. β-Glucan, a dietary fiber in effective prevention of lifestyle diseases – An insight. Bioactive Carbohydrates and Dietary Fibre. 2019;19. DOI: 10.1016/j.bcdf.2019.100187
  41. Varnosfaderani SMN, Ebrahimzadeh F, Oryani MA, Khalili S, Almasi F, Heris RM, Payandeh Z, Li C, Afjadi MN, Bahrami AA. Potential promising anticancer applications of β-glucans: a review. Bioscience Reports. 2024;44(1). DOI: 10.1042/BSR20231686
  42. Wang G, Li Z, Tian M, Cui X, Ma J, Liu S, Ye C, Yuan L, Qudus MS, Afaq U, et al. β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses. 2023;15(5). DOI:10.3390/v15051204
  43. Doolan DL, Kozlakidis Z, Zhang Z, Paessler S, Su L, Yokota YT, Shioda T, Rodriguez-Palacios A, Kaynar AM, Ahmed R, et al. Editorial: Coronavirus Disease (COVID-19): Pathophysiology, Epidemiology, Clinical Management and Public Health Response. Frontiers in Public Health. 2021;9. DOI: 10.3389/fpubh.2021.807159
  44. Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database of Systematic Reviews. 2022;2022(12). DOI: 10.1002/14651858.CD015477
  45. Avramia I, Amariei S. Spent Brewer’s yeast as a source of insoluble β-glucans. International Journal of Molecular Sciences. 2021;22(2):1–26. DOI:10.3390/ijms22020825
  46. Desamero MJM, Chung SH, Kakuta S. Insights on the functional role of beta-glucans in fungal immunity using receptor-deficient mouse models. International Journal of Molecular Sciences. 2021;22(9). DOI: 10.3390/ijms22094778
  47. Kaminski K, Skora M, Krzyściak P, Stączek S, Zdybicka-Barabas A, Cytryńska M. Synthesis and study of antifungal properties of new cationic beta-glucan derivatives. Pharmaceuticals. 2021;14(9). DOI:10.3390/ph14090838
  48. Zhang Z, Tang Q, Wu D, Zhou S, Yang Y, Feng N, Tang C, Wang J, Yan M, Liu Y, et al. Regioselective sulfation of β-glucan from Ganoderma lucidum and structure-anticoagulant activity relationship of sulfated derivatives. International Journal of Biological Macromolecules. 2020;155:470–478. DOI: 10.1016/j.ijbiomac.2020.03.234
  49. He M, Yang Y, Shao Z, Zhang J, Feng C, Wang L, Mao W. Chemical structure and anticoagulant property of a novel sulfated polysaccharide from the green alga cladophora oligoclada. Marine Drugs. 2021;19(10). DOI:10.3390/md19100554
  50. Joyce SA, Kamil A, Fleige L, Gahan CGM. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Frontiers in Nutrition. 2019;6. DOI: 10.3389/fnut.2019.00171
  51. Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Critical Reviews in Food Science and Nutrition. 2023;63(27):8752–8767. DOI:10.1080/10408398.2022.2061909
  52. Nakashima A, Yamada K, Iwata O, Sugimoto R, Atsuji K, Ogawa T, Ishibashi-Ohgo N, Suzuki K. β-Glucan in Foods and Its Physiological Functions. Journal of Nutritional Science and Vitaminology 2018.DOI: 10.3177/jnsv.64.8
  53. Sut S, Dall’Acqua S. Food-derived nutraceuticals for hypercholesterolemia management, mode of action and active ingredients. Food Bioscience. 2023;54. DOI:10.1016/j.fbio.2023.102866
  54. Tabeie F, Tabatabaei SM, Mahmoud-Pashazadeh A, Assadi M. Radioprotective effect of beta D-glucan and vitamin E on gamma irradiated mouse. Journal of Clinical and Diagnostic Research. 2017;11(2):TC08-TC11. DOI:10.7860/JCDR/2017/19367.9437
  55. Gu Y-H. Radiation Protective and Immunopotentiating Effect of Lymphocytes by β-Glucan. Lymphocytes. 2018.DOI: 10.5772/IntechOpen 80496
  56. Fusté NP, Guasch M, Guillen P, Anerillas C, Cemeli T, Pedraza N, Ferrezuelo F, Encinas M, Moralejo M, Garí E. Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydrate Polymers. 2019; 210:389–398. DOI: 10.1016/j.carbpol.2019.01.090
  57. Majtan J, Jesenak M. β-Glucans: Multi-functional modulator of wound healing. Molecules. 2018;23(4). DOI: 10.3390/molecules23040806.
  58. Rajarajaran A, Dakshanamoorthy A. Beta-Glucans: A Biomimetic Approach for Reducing Chronicity in Delayed Wound Healing. Journal of Dermatology and Skin Science. 2020.
  59. Ren Y, Xie H, Liu L, Jia D, Yao K, Chi Y. Processing and prebiotics characteristics of β-glucan extract from highland barley. Applied Sciences (Switzerland). 2018;8(9). DOI:10.3390/app8091481
  60. Schmidt M. Cereal beta-glucans: an underutilized health endorsing food ingredient. Critical Reviews in Food Science and Nutrition. 2022;62(12):3281–3300. DOI:10.1080/10408398.2020.1864619
  61. Ntiantiasi N, Lianou A. Isolation and in vitro screening of the probiotic potential of microorganisms from fermented food products. Frontiers in Industrial Microbiology. 2023;1. DOI:10.3389/finmi.2023.1257483
  62. Natakankitkul S. Development of skincare cosmetic from yeast beta-glucans. Thai Journal of Pharmaceutical Sciences. 2016.
  63. Zhu F, Du B, Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids. 2016; 52:275–288. DOI: 10.1016/ j. foodhyd.2015.07.003
  64. Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant Activity of β-Glucan. ISRN Pharmaceutics. 2012;2012:1–5. DOI:10.5402/2012/125864
  65. Zhao L, Lin S, Lin J, Wu J, Chen H. Effect of acid hydrolysis on the structural and antioxidant characteristics of β-glucan extracted from Qingke (Tibetan hulless barley). Frontiers in Nutrition. 2022;9. DOI:10.3389/fnut.2022.1052901
  66. Du B, Bian Z, Xu B. Skin health promotion effects of natural Beta-Glucan derived from cereals and microorganisms: A review. Phytotherapy Research. 2014;28(2):159–166.
  67. Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. International Journal of Molecular Sciences. 2024;25(4). DOI: 10.3390/ijms25041982.
  68. Muthuramalingam K, Choi SI, Hyun C, Kim YM, Cho M. β-Glucan-Based Wet Dressing for Cutaneous Wound Healing. Advances in Wound Care. 2019;8(4):125–135. DOI:10.1089/wound. 2018.0843
  69. Moon SH, Lee I, Feng X, Lee HY, Kim J, Ahn DU. Effect of dietary beta-glucan on the performance of broilers and the quality of broiler breast meat. Asian-Australasian Journal of Animal Sciences. 2016;29(3):384–389. DOI:10.5713/ajas.15.0141
  70. Benefits of Application of Yeast β-Glucans in Poultry. Ohly.2018.
  71. Luo J, Zeng D, Cheng L, Mao X, Yu J, Yu B, Chen D. Dietary β-glucan supplementation improves growth performance, carcass traits and meat quality of finishing pigs. Animal Nutrition. 2019;5(4):380–385. DOI:10.1016/ j. aninu.2019.06.006
  72. Edison LK, Shiburaj S, Pradeep NS. Microbial Beta Glucanase in Agriculture. In: Advances in Microbial Biotechnology. Apple Academic Press; 2019. pp. 53–72.DOI:10.1201/9781351248914-10
  73. Andrzejczak OA, Sørensen CK, Wang WQ, Kovalchuk S, Hagensen CE, Jensen ON, Carciofi M, Hovmøller MS, Rogowska-Wrzesinska A, Møller IM, et al. The effect of phytoglobin overexpression on the plant proteome during nonhost response of barley (Hordeum vulgare) to wheat powdery mildew (Blumeria graminis f. sp. tritici). Scientific Reports. 2020;10(1). DOI:10.1038/s41598-020-65907-z
  74. Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. Environmental Science and Pollution Research. 2022;29(53):80062–80087. DOI:10.1007/s11356-022-20938-z
  75. Veverka M, Dubaj T, Gallovič J, Jorík V, Veverková E, Mičušík M, Šimon P. Beta-glucan complexes with selected nutraceuticals: Synthesis, characterization, and stability. Journal of Functional Foods. 2014;8:309–318. DOI: 10.1016/j.jff.2014.03.032
  76. Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics. 2023;15(9). DOI:10.3390/pharmaceutics15092227
  77. Verma MS, Gu FX. 1,3-Beta-Glucans: Drug Delivery and Pharmacology. In: Karunaratne DN, editor. The Complex World of Polysaccharides. Rijeka: IntechOpen; 2012. p. Ch. 21. DOI: 10.5772/50363
  78. Gallotti F, Lavelli V, Turchiuli C. Application of Pleurotus ostreatus β-glucans for oil–in–water emulsions encapsulation in powder. Food Hydrocolloids. 2020;105. DOI: 10.1016/j.foodhyd.2020.105841
  79. Li X, Cheung PCK. Application of natural β-glucans as biocompatible functional nanomaterials. Food Science and Human Wellness. 2019;8(4):315–319. DOI: 10.1016/j.fshw.2019.11.005
  80. Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi. 2020;6(4):1–33.DOI: 10.3390/jof6040356.
  81. Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). International Journal of Environmental Research and Public Health. 2021;18(23). DOI:10.3390/ijerph182312636
  82. Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). International Journal of Environmental Research and Public Health. 2021;18(23). DOI:10.3390/ijerph182312636
  83. Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi. 2020;6(4):1–33.
  84. Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). International Journal of Environmental Research and Public Health. 2021;18(23). DOI:10.3390/ijerph182312636
  85. Oliveira LVN, Wang R, Specht CA, Levitz SM. Vaccines for human fungal diseases: close but still a long way to go. npj Vaccines. 2021;6(1):33.