International Journal of Drug Delivery Technology
Volume 15, Issue 3

Enhancement of Solubility and Dissolution of Azilsartan using Liquisolid Technology: Formulation, Optimization and Evaluation

Vangala Lavanya1,2, Annammadevi G S1* 

1Department of Pharmaceutics, GITAM School of pharmacy, GITAM Deemed to be university, Visakhapatnam, Andhra Pradesh-530045, India

2Department of Pharmaceutics, Princeton college of pharmacy, Hyderabad, Telangana-500088, India 

Received: 24th May, 2025; Revised: 21st Jul, 2025; Accepted: 19th Aug, 2025; Available Online: 25th Sep, 2025 

ABSTRACT

The Liquisolid technique was employed to enhance the solubility and dissolution of Azilsartan, an angiotensin II receptor

blocker with poor aqueous solubility. A 2² full factorial design was utilized to optimize the formulation parameters, particularly  focusing  on  FUJ  and  Croscarmellose  Sodium  concentrations. Solubility  studies  conducted  in non-volatile

solvents (Labrasol, Captisol, Transcutol HP, and Capryol) identified Labrasolas the most effective solvent (96.37± 0.82mg/mL), while Fujicalin exhibited the highest solubility enhancement (0.42 ± 0.02 mg/mL) among different carriers. The optimized  formulation, containing 50mg  FUJ  and  5% Croscarmellose  Sodium, demonstrated significantly improved drug release compared to the pure drug. FTIR analysis confirmed no significant drug-excipient interactions, ensuring the stability of the formulation. Pre-compression and post-compression parameters, including Carr’s Index (13.85 ± 0.30%), Hausner’s Ratio (1.16 ± 0.01), hardness (5.6 ± 0.2 kg/cm²), friability (0.78 ± 0.03%), and disintegration time (65.2 ± 2.1 sec, n=3), confirmed the formulation’s suitability for tablet manufacturing. Stability studies conducted per ICH guidelines demonstrated that the optimized formulation remained stable for three months.The study confirms that the Liquisolid technique significantly improves the solubility and dissolution of Azilsartan.

Keywords: Azilsartan, Liquisolid technique, Solubility Enhancement, Fujicalin, Labrasol, Dissolution, Drug Release, Factorial Design

How to cite this article: Vangala Lavanya, Annammadevi G S. Enhancement of Solubility and Dissolution of Azilsartan using Liquisolid Technology: Formulation, Optimization and Evaluation. International Journal of Drug Delivery Technology. 2025;15(3):959-65. doi: 10.25258/ijddt.15.3.8

REFERENCES

  1. Javadzadeh, Y., Jafari-Navimipour, B. and Nokhodchi, A., 2007. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). International journal of pharmaceutics, 341(1), pp.26-34.
  2. Javadzadeh, Y., Siahi-Shadbad, M.R., Barzegar-Jalali, M. and Nokhodchi, A., 2005. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Il Farmaco, 60(4), pp.361-365.
  3. Nokhodchi, A., Javadzadeh, Y., Siahi-Shadbad, M.R. and Barzegar-Jalali, M., 2005. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. Journal of Pharmacy and Pharmeutical Sciences, 8(1), pp.18-25.
  4. Emmadi, S.K., Sanka, K., Potu, A.R., Jukanti, R., Bandari, S. and Veerareddy, P.R., 2010. Formulation and pharmacodynamic evaluation of meloxicam liquisolid compacts. Latin American Journal of Pharmacy, 29 (8), pp.1303-1310.
  5. Tiong, N. and Elkordy, A.A., 2009. Effects of liquisolid formulations on dissolution of naproxen. European Journal of Pharmaceutics and Biopharmaceutics, 73(3), pp.373- 384.
  6. Nokhodchi, A., Hentzschel, C.M. and Leopold, C.S., 2011. Drug release from liquisolid systems: speed it up, slow it down. Expert opinion on drug delivery, 8(2), pp.191-205.
  7. Spireas, S. and Sadu, S., 1998. Enhancement of prednisolone dissolution properties using liquisolid compacts. International Journal of Pharmaceutics, 166(2), pp.177- 188.
  8. Spireas, S., Sadu, S. and Grover, R., 1998. In vitro release evaluation of hydrocortisone liquisolid tablets. Journal of pharmaceutical sciences, 87(7), pp.867-872.
  9. Spireas, S., 2002. Liquisolid systems and methods of preparing same. U.S. Patent 6,423,339
  10. European Medicines Agency. ”Edarbi (Azilsartan Medoxomil Potassium),” Assessment Report Procedure no. EMEA/H/C/ 002293; 2011.
  11. Vasiliou S. Azilsartan medoxomil for the treatment of hypertension. Drugs Today (Barc). 2011;47(9):647-51. doi: 10.1358/dot.2011.47.9.1688573, PMID 21971539.
  12. Hjermitslev M, Grimm DG, Wehland M, Simonsen U, Krüger M. Azilsartan medoxomil, an angiotensin II receptor antagonist for the treatment of hypertension. Basic.
  13. Bharathi M, Kamaraj R, Navyaja K, Kumar TS, 2024. Pre-Formulation, Optimization, and in Vitro Dissolution Study of Sustained Release Metformin Hydrochloride Tablets Using Deep Neural Networks. J Med Chem Sci.; 7:1953–68.
  14. Khan A, Almatroudi AA, Younus H. Chemosensitizing potential of methylglyoxal with metronomic cyclophosphamide in breast cancer therapy: In vitro and in vivo evidence. J Med Pharm Chem Res. 2025;7(12):2768–87.
  15. Gopalaiah SB, Jayaseelan K. Quality-by-design guided development, optimization and characterization of Irbesartan-loaded chitosan nanoparticles: A novel antihypertensive drug delivery system. J Med Pharm Chem Res. 2025;7(11):2574–95.
  16. Lyagoubi A, Yousfi LK, Akhdari S El, Zarrouk A, Zinedine A, Errachidi F. Optimization of the factors affecting dried apricots antioxidants content by experimental design. J Med Pharm Chem Res. 2025;7(2):241–54.
  17. Kamaraj R, Bharathi M, T SK, 2024. Design and Optimization of Rosuvastatin Calcium Orally Fast Disintegrating Tablet Using Artificial Neural Network Based on Multilayer Perceptron Model. J Med Chem Sci.; 7:1233–50.
  18. Rapolu K, Muvvala S. Optimization and Characterization of Brinzolamide Loaded Biodegradable, Amphiphilic Poly-caprolactone-Polyethylene Glycol-Poly-Caprolactone (5000-1000-5000) Tri-block Co-polymeric Carriers as Long-Acting Intravitreal Drug Delivery Vehicle for Glaucoma Therapy. Adv J Chem Sect A. 2025;8(3):639–66.
  19. Prohit PV, Pakhare PS, Pawar VB, Dandade SS, Waghmare MS, Shaikh FA, et al. Formulation and Comparative Evaluation of Naproxen-Based Transdermal Gels. J Pharm Sci Comput Chem. 2025;1(2):83–105.
  20. Dayyih WA, Awad R. Revolutionizing drug development: The role of AI in modern pharmaceutical research. J Pharm Sci Comput Chem. 2025;1(1):206–27.
  21. Salman SS. 2024; Green Synthesis, Analysis, and Characterization of Nano-silver- Based Conyza Canadensis (SYN: Erigeron Canadensis) Extract. Chem Methodol. 8:856–73.
  22. Ashindortiang OI, Anyama CA, Ayi AA. 2022; Phytosynthesis, Characterization and Antimicrobial Studies of Silver Nanoparticles Using Aqueous Extracts of Olax Subscorpioidea. Adv J Chem Sect A. 5(3):215–25.
  23. Sruthi V, Shankar Rao GB. 2024; Extraction, Phytochemical Screening, and Isolation of Active Fraction of Turnera ulmifolia Linn. Asian J Green Chem. 8(4):411–26.
  24. Ashindortiang OI, Anyama CA, Ayi AA. Phytosynthesis, Characterization and Antimicrobial Studies of Silver Nanoparticles Using Aqueous Extracts of Olax Subscorpioidea. Adv J Chem Sect A. 2022;5(3):215–25.
  25. Odeh LU, Nnanyelugo CE, Adams A, Abubakar SA, Ejikeme CS, Igwe EP, et al. The synthesis and Characterization of Biobased Catalyst Derived from Palm Kernel Shell and Eggshell for the Production of Biodiesel. Adv J Chem Sect B, Nat Prod Med Chem. 2024;6(4):409–27.
  26. Fynnisa Z, Frida E, Tarigan J. Comparison of the Effectiveness of the Coprecipitation Method for SiO₂ Extraction from Natural Pahae Zeolite and Palm Oil Boiler Ash. Adv J Chem Sect A. 2025;8(10):1578–91.